March

Time and date

3PM Friday, Mar 14, 2025

Salle 03, PariSanté Campus


Seminar time

This seminar is scheduled for 3PM (not the usual 4PM)

Conjugate gradient methods for high-dimensional GLMMs

Andrea Pandolfi Università Bocconi

Generalized linear mixed models (GLMMs) are a widely used tool in statistical analysis. The main bottleneck of many computational approaches lies in the inversion of the high dimensional precision matrices associated with the random effects. Such matrices are typically sparse; however, the sparsity pattern resembles a multi partite random graph, which does not lend itself well to default sparse linear algebra techniques. Notably, we show that, for typical GLMMs, the Cholesky factor is dense even when the original precision is sparse. We thus turn to approximate iterative techniques, in particular to the conjugate gradient (CG) method. We combine a detailed analysis of the spectrum of said precision matrices with results from random graph theory to show that CG-based methods applied to high-dimensional GLMMs typically achieve a fixed approximation error with a total cost that scales linearly with the number of parameters and observations. Numerical illustrations with both real and simulated data confirm the theoretical findings, while at the same time illustrating situations, such as nested structures, where CG-based methods struggle.

Importance sampling-based gradient method for dimension reduction in Poisson log-normal model

Julien Stoehr Université Paris Dauphine, PSL

High-dimensional count data poses significant challenges for statistical analysis, necessitating effective methods that also preserve explainability. We focus on a low rank constrained variant of the Poisson log-normal model, which relates the observed data to a latent low-dimensional multivariate Gaussian variable via a Poisson distribution. Variational inference methods have become a golden standard solution to infer such a model. While computationally efficient, they usually lack theoretical statistical properties with respect to the model. To address this issue we propose a projected stochastic gradient scheme that directly maximizes the log-likelihood. We prove the convergence of the proposed method when using importance sampling for estimating the gradient. Specifically, we obtain a rate of convergence of \(O(T^{-1/2} + N^{-1})\) with \(T\) the number of iterations and \(N\) the number of Monte Carlo draws. The latter follows from a novel descent lemma for non convex \(L\)-smooth objective functions, and random biased gradient estimate. We also demonstrate numerically the efficiency of our solution compared to its variational competitor. Our method not only scales with respect to the number of observed samples but also provides access to the desirable properties of the maximum likelihood estimator.