Fe¥.:] [HE UNIVERSITY OF

W¥ WESTERN
*e? AUSTRALIA

Monotone polynomials in
constrained mixed effects models

Joshua J. Bon with
B.A. Turlach & K. Murray

oth of May, 2017

School of Mathematics and Statistics, University of Western Australia



Introduction



An uphill battle
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Some solutions

= |sotonic regression®

= Constrained smoothing splines?

» Reparameterised polynomial regression®

1J. Friedman, R. Tibshirani, Technometrics 26, 243-250 (1984).
2|. P. Dierckx, Computing 24, 349-371 (1980).
3K. Murray et al., Computational Statistics 28, 1989-2005 (2013).



Reparameterised polynomial regression

What do reparameterised polynomials offer?



Reparameterised polynomial regression

What do reparameterised polynomials offer?

+ Parametric interpretation (after transformation)

+ Likelihood based

+ Smooth curves

+ Continuous derivatives (inflection point calculation)

+ Implemented in MonoPoly* package in R

4K. Murray et al., Computational Statistics 28, 1989-2005 (2013).



Reparameterised polynomial regression

What do reparameterised polynomials offer?

+ Parametric interpretation (after transformation)
Likelihood based
Smooth curves

Continuous derivatives (inflection point calculation)

+ + + +

Implemented in MonoPoly* package in R

— Non-linear optimiser
— Not applicable to other (shape) constraints

— Can not accomodate mixed effects

4K. Murray et al., Computational Statistics 28, 1989-2005 (2013).



Aim: Develop a method for fitting monotone polynomials with
mixed effects in a parametric frequentist framework.



Aim: Develop a method for fitting monotone polynomials with
mixed effects in a parametric frequentist framework.

Results:

= COLS - Constrained fixed effects model estimation
= COLS & EM - Constrained mean mixed effects models
= COLS, EM, & RE truncation - Constrained individual curves

= Demonstration with monotonicity constraints



The least squares problem



Minimising the RSS...

min {(Y— XB)7 (Y - xg)} st. B e Qg

y1 po(x1) pi(x1) -+ pg(x1) Bo
v }/.2 x— Po(lxz) P1(-X2) e Pq(.Xz) 5= 5-1
_)/n_ _pO(Xn) P1 (Xn) ce pq(Xn)_ _Bq_

using polynomial basis defined by the p;'s of degree i.



...with monotonicity

Take, for example, the set of parameters describing a
monotonically increasing polynomial,

Qs ={B:p(xB)>0,Vxe S}



...with monotonicity

Take, for example, the set of parameters describing a
monotonically increasing polynomial,

Qs ={B:p(xB)>0,Vxe S}
What can we say about Qg?

» Qg # a finite set of parameter inequalities (e.g. ;> aj)
= Boundaries for each f3; are dependent
= We can check if p(x; 8) € Qg



A new solution



A new solution

We use two complementary techniques to optimise the RSS.

= A coordinate descent algorithm

= An orthonormal design matrix



Coordinate descent for constrained problems

Coordinate descent:

= Minimise each coordinate of input successively
= Take “blind"” step in direction that minimises objective
function

= Find best permissible value with line search



Conditioning the least squares problem

Monomial polynomials are highly dependent, resulting in;

= |ll-conditioned least squares problem

= High coefficient correlation, inferential problems®:®

= Slower coordinate descent

5R. A. Bradley, S. S. Srivastava, The American Statistician 33, 11-14 (1979).
6S. C. Narula, International Statistical Review 47, 31-36 (1979).



Conditioning the least squares problem

Monomial polynomials are highly dependent, resulting in;

= |ll-conditioned least squares problem

= High coefficient correlation, inferential problems®:®

= Slower coordinate descent

Orthonormal design using discrete orthonormal polynomials
removes a source of dependence;

« XTX=1
%> = fl5)

5R. A. Bradley, S. S. Srivastava, The American Statistician 33, 11-14 (1979).
6S. C. Narula, International Statistical Review 47, 31-36 (1979).
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Coordinate descent - line search
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Coordinate descent - line search

monotone boundary
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Coordinate descent - line search

L d
’
and so on...

monotone boundary
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Coordinate descent - coordinate iterations

monotone boundary



Coordinate descent - coordinate iterations
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Coordinate descent - coordinate iterations

monotone boundary



Coordinate descent - coordinate iterations
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Coordinate descent - coordinate iterations

and so on...

monotone boundary
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Demonstration on the Berkeley Growth Dataset

Female Male

Height (cm)

5 10 15 5 10 15
Age (years)

12



Demonstration on the Berkeley Growth Dataset

Male fit (n = 1,209)
OLS MonoPoly COLS Diff. (%)

(1) (2) B3 -
Monotonic fit? No Yes Yes
Bo 141.33 141.27 141.27 0.00
B 46.77 45.99 45.98 -0.03
B> -8.70 -4.84 -4.80 -0.75
I 69.40 88.83 89.11 0.32
Ba 128.97 86.85 86.58 -0.31
Bs -159.89  -291.42  -292.94 0.52
Be -449.39 -205.44  -294.81 -0.21
B 55.33 415.40  418.63 0.78
Bs 544.75 321.54 321.07 -0.15
Bo 13154  -297.78  -300.64 0.96
Bro -231.37  -120.38  -120.33 -0.05
B -93.63 92.01 92.86 0.93
RSS 42051.86  42060.93 42060.93 0.00
Runtime (secs) < 0.01 17.01 4.39 -74.19
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Demonstration on the Berkeley Growth Dataset

Female fit (n = 1,674)
OLS MonoPoly COLS Diff. (%)

(1) (2) B3 -
Monotonic fit? Yes Yes Yes
Bo 139.96 139.96  139.96 0.00
N 56.41 56.41 56.41 0.00
B> 28.34 28.34 28.34 0.00
s -22.92 -22.92 -22.92 0.00
Ba -235.65  -235.65  -235.65 0.00
Bs -37.00 -37.00 -37.00 -0.01
Be 498.14 498.13 498.14 0.00
s 169.16 169.16 169.16 0.00
Bs -480.85  -480.85  -480.85 0.00
Bo -219.32  -219.32  -219.32 0.00
Bro 172.03 172.03 172.03 0.00
P11 101.86 101.87 101.86 0.00
RSS 55297.89  55297.89 55297.89 0.00
Runtime (secs) < 0.01 17.03 3.96 -76.75
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Constrained Orthogonal Least Squares (COLS) estimation

COLS in summary;

+ Testing suggests it may be faster than existing methods
+ Requires only linear reparametrisation

+ Applies to any closed convex parameter space

+ Difficult constraints such as monotonicity
+ Multiple constraints

+ Can be used in mixed effects models

— lterative, not a closed form solution (like OLS)

15



Polynomial mixed effects models




Polynomial Mixed effects models

=



Estimation methodology

Two questions:

1.

How do we constrain the mean polynomial curve to be
monotonic?

. How do we constrain individuals’ polynomial curves to be

monotonic, in addition to the mean curve?

17



Estimation methodology

Two questions:

1. How do we constrain the mean polynomial curve to be
monotonic?

2. How do we constrain individuals’ polynomial curves to be
monotonic, in addition to the mean curve?

Suggested methods:

Al. The Expectation-Maximisation’ algorithm and COLS

A2. Truncated multivariate normal distribution

"A. P. Dempster et al., Journal of the Royal Statistical Society. Series B
(Methodological) 39, 1-38 (1977).
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1. Constraining the mean curve

Advantages of the Expectation-maximisation algorithm;
= Separates mean estimation from random effects estimation
= COLS on RSS-like problem

= Flexible for random effects

= Constrained
= MCEM for non-standard random effects®

= Already tested on mixed effects models®

= Convergence properties on constrained parameter space hold'°

8J. G. Booth, J. P. Hobert, Journal of the Royal Statistical Society. Series B
(Statistical Methodology) 61, 265-285 (1999).

9N. Laird et al., Journal of the American Statistical Association 82, 97-105 (1987).
10D, Nettleton, Canadian Journal of Statistics 27, 639-648 (1999).

18



1. Constraining the mean curve

1. Initialise parameters
2. E-step: U =& (u | Y,B[t*]), with U ~ N (0, G)
3. M-step: Minimise RSS with COLS and Y* = Y — ZU1

B[t] _ argmﬁin {(Y* — Xﬁ)T(Y* — Xﬁ)} sit. Be€Qg

4. M-step: Update variance parameters

5. lterate through E-steps and M-steps until convergence

19



2. Constraining the mean and individuals’ curves

1. Initialise parameters
2. E-step: Ul —E (uT | Y,ﬂ[t’”), with U7 ~ Nr(g) (0, G)
3. M-step: Minimise RSS with COLS and Y* = Y — ZU1

g1 = argmr {(r=x8)" (v~ x8) -1 (8)} st. Be gy

4. M-step: Update variance parameters

5. lterate through E-steps and M-steps until convergence

20



2. Constraining the mean and individuals’ curves

Complications from constraining individuals’ curves;

= 7(3), the “penalty” term from truncation
- E (uT\ Y,ﬁ[t*])

21



2. Constraining the mean and individuals’ curves

Complications from constraining individuals’ curves;

= 7(3), the “penalty” term from truncation
- E (uT\ Y,ﬁ[t*])

n(8) = log (/T(ﬁ) ((27r)rg|G|)_1/2 exp {—;WTG1 W} dW)

When r = 2 the truncation is point-wise:

T(B) = {UT = [UO71 upl--- Uog U17g] T S R2g s.t. Uil > —C(ﬁ)}

21



2. Constraining the mean and individuals’ curves

ui1 > —c(B)

22



2. Constraining individuals’ curves

For r=2;

= Expectation from point-truncated normal theory

= Analytical differentiation of 1(3) from chain rules. Envelope
theorem for ¢(3)

For r > 3;

= Monte Carlo EM to deal with expectation
= Numerical differentiation of 7n(3)

23



Sleep Study Data - Degree 8 mean curves

w
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S=10,9]

r = random effects

Average reaction time (ms)
8
8

* = constrained

250

Days

(= 8%, r=2%m= = 8% r=2m=q=8%r=3
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Sleep Study Data - Degree 4 mean curves

350

1
o
a

S=10,9]

r = random effects

Average reaction time (ms)
8
38

* = constrained

275

Days

(] = 4%, [ 2% (] = 4%, [ =2 = 4%, =3
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Conclusion




Conclusion - Fixed effects models

For fixed effects models, this work has delivered;

= COLS - a new method constrained regression (on closed,

convex sets)

= Opens up possibilities for shape constraints, joint constraints,

and more...

= Can extend beyond polynomials of a single variable

27



Conclusion - Mixed effects models

For mixed effects models;

= Demonstrated COLS can estimate these with an EM-algorithm

= Derived full method for r = 2 with and without constrained

individuals' curves
= Suggested MCEM to extend for r > 3

= Widely useful because of the flexibility of COLS and the
EM-algorithm

28



Questions?



Appendix




Reparameterised polynomial regression

For example a monotonic polynomial can be written as'!

p(x) :5+a/oxﬁ{1+2bjt+ (88 +2) tz}dt (1)

with unconstrained parameters ¢, b;'s, and ¢;'s.

HC. D. Elphinstone, Communications in Statistics - Theory and Methods 12, 161-198
(1983), D. M. Hawkins, Computational Statistics 9, 233-247 (1994), D. Heinzmann,
Computational Statistics 23, 343-360 (2008).
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Conditioning the least squares problem

For better properties we use discrete orthonormal polynomials

(1) pi(xa) pa(xa) o palx1))
po(x2) pi(x2) pa(x2) - pg(x)
Xo: . . . .
_PO(Xn) p1(xn) p2(xn) - pq(Xn)_
o) =40 T here () = 3 Ax)e()
i Pj) = where (f,g) = x)g(x
PP Yo i =t

30



Conditioning the least squares problem

For better properties we use discrete orthonormal polynomials;

= Discrete orthonormal polynomials results in an orthonormal
design matrix
Ty _
X, Xo=1Iq

= Calculate X, with a QR decomposition or as in Emerson!?

12p_ L. Emerson, Biometrics 24, 695-701 (1968).
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Conditioning the least squares problem

mﬁi’n {RSS(B)} s.t. B € Qg

monomial (X) orthonormal (X,)
ORSS T T T
ST 2(xx;3—x Y) 2(,@—XOY)
AU

(xTx) T xTy xTy

32



Coordinate descent theory

Good global convergence properties when'3

= Parameter space closed and convex

= Object function continuously differentiable

Both satisfied by monotone polynomials over RSS.

= Monotone increasing/decreasing
= Over R or a compact subset of R

= Over a broad range of difficult constraints

I3A Cassioli et al., European Journal of Operational Research 231, 274-281 (2013).
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Mixed effects models

One way to define the underlying probability model is with;

= a conditional normal distribution for Y
(Y |U=U)~N(XB+ ZU.R)
= and a normal distribution for U

U~ N(0,G)

34



Mixed effects models

This allows the joint pseudo-log-likelihood function to be written as

Iy,u(IB7 ¢R7 ¢)G ‘ Yau)
= lyu(B, Pr, ¢ | Y-U) + (B, Pr, ¢ | U)

- —% [+ log |R| + log |G| + ETR € + UT6 ]

where £E=Y - X8 — ZU

35



2. Constraining individuals’ curves

Constrained random effects, such that individual curves are

monotone, may be specified by the probability model;

= a conditional normal distribution for Y (as before)
(V|Ur=U)~N(XB+ ZU,R)
= and a truncated multivariate normal distribution for U
UT ~ N715)(0,G)

where T(B) C R"™8

36



2. Constraining individuals’ curves

The general pseudo-log-likelihood becomes:

yur (B, ¢r, b6l Y. U) = yu(B; ¢r P6 | Y:U) —1(B)

Where n(/3) is the normalising term;

7(8) = log ( / , (er6) e {—;wTa—lw} dw>

37



2. Constraining individuals’ curves

When r= 2 we have,
-
T(B) = {UT = [wpru11-- wogurg| € R2€
s.t. uj1 > —C(,B), i=1,2, ... ,g}

which we incorporate into the expectation step.

P (x B)

38
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