

Monotone polynomials in constrained mixed effects models

Joshua J. Bon with

B.A. Turlach & K. Murray

9th of May, 2017

School of Mathematics and Statistics, University of Western Australia

Introduction

An uphill battle

An uphill battle

An uphill battle

Some solutions

- Isotonic regression¹
- Constrained smoothing splines²
- Reparameterised polynomial regression³

¹J. Friedman, R. Tibshirani, *Technometrics* **26**, 243–250 (1984).

²I. P. Dierckx, *Computing* **24**, 349–371 (1980).

³K. Murray et al., Computational Statistics 28, 1989–2005 (2013).

Reparameterised polynomial regression

What do reparameterised polynomials offer?

Reparameterised polynomial regression

What do reparameterised polynomials offer?

- + Parametric interpretation (after transformation)
- + Likelihood based
- + Smooth curves
- + Continuous derivatives (inflection point calculation)
- + Implemented in MonoPoly⁴ package in R

⁴K. Murray et al., Computational Statistics 28, 1989–2005 (2013).

Reparameterised polynomial regression

What do reparameterised polynomials offer?

- + Parametric interpretation (after transformation)
- + Likelihood based
- + Smooth curves
- + Continuous derivatives (inflection point calculation)
- + Implemented in MonoPoly⁴ package in R
- Non-linear optimiser
- Not applicable to other (shape) constraints
- Can not accomodate mixed effects

⁴K. Murray et al., Computational Statistics **28**, 1989–2005 (2013).

Outline

<u>Aim</u>: Develop a method for fitting monotone polynomials with mixed effects in a parametric frequentist framework.

Outline

<u>Aim</u>: Develop a method for fitting monotone polynomials with mixed effects in a parametric frequentist framework.

Results:

- COLS Constrained fixed effects model estimation
- COLS & EM Constrained mean mixed effects models
- COLS, EM, & RE truncation Constrained individual curves
- Demonstration with monotonicity constraints

The least squares problem

Minimising the RSS...

$$\min_{\boldsymbol{\beta}} \left\{ (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta}) \right\} \text{ s.t. } \boldsymbol{\beta} \in \Omega_{\boldsymbol{\beta}}$$

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} p_0(x_1) & p_1(x_1) & \cdots & p_q(x_1) \\ p_0(x_2) & p_1(x_2) & \cdots & p_q(x_2) \\ \vdots & \vdots & & \vdots \\ p_0(x_n) & p_1(x_n) & \cdots & p_q(x_n) \end{bmatrix}, \ \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_q \end{bmatrix}$$

using polynomial basis defined by the p_i 's of degree i.

...with monotonicity

Take, for example, the set of parameters describing a monotonically increasing polynomial,

$$\Omega_{\boldsymbol{\beta}} = \{ \boldsymbol{\beta} : p'(x; \boldsymbol{\beta}) \ge 0, \forall x \in S \}$$

...with monotonicity

Take, for example, the set of parameters describing a monotonically increasing polynomial,

$$\Omega_{\beta} = \{ \beta : p'(x; \beta) \ge 0, \forall x \in S \}$$

What can we say about Ω_{β} ?

- $\Omega_{\beta} \neq a$ finite set of parameter inequalities (e.g. $\beta_i \geq a_i$)
- Boundaries for each β_i are dependent
- We can check if $p(x; \beta) \in \Omega_{\beta}$

6

A new solution

A new solution

We use two complementary techniques to optimise the RSS.

- A coordinate descent algorithm
- An orthonormal design matrix

Coordinate descent for constrained problems

Coordinate descent:

- Minimise each coordinate of input successively
- Take "blind" step in direction that minimises objective function
- Find best permissible value with line search

Conditioning the least squares problem

Monomial polynomials are highly dependent, resulting in;

- Ill-conditioned least squares problem
- High coefficient correlation, inferential problems^{5,6}
- Slower coordinate descent

⁵R. A. Bradley, S. S. Srivastava, *The American Statistician* **33**, 11–14 (1979).

⁶S. C. Narula, *International Statistical Review* **47**, 31–36 (1979).

Conditioning the least squares problem

Monomial polynomials are highly dependent, resulting in;

- Ill-conditioned least squares problem
- High coefficient correlation, inferential problems^{5,6}
- Slower coordinate descent

Orthonormal design using discrete orthonormal polynomials removes a source of dependence;

$$X^T X = I$$

$$\bullet \quad \frac{\partial \mathsf{RSS}}{\partial \beta_i} = f(\beta_i)$$

⁵R. A. Bradley, S. S. Srivastava, *The American Statistician* **33**, 11–14 (1979).

⁶S. C. Narula, *International Statistical Review* **47**, 31–36 (1979).

Demonstration on the Berkeley Growth Dataset

Demonstration on the Berkeley Growth Dataset

Male fit $(n = 1, 209)$				
	OLS	MonoPoly	COLS	Diff. (%)
	(1)	(2)	(3)	(3) - (2)
Monotonic fit?	No	Yes	Yes	
\hat{eta}_{0}	141.33	141.27	141.27	0.00
\hat{eta}_1	46.77	45.99	45.98	-0.03
\hat{eta}_2	-8.70	-4.84	-4.80	-0.75
\hat{eta}_3	69.40	88.83	89.11	0.32
\hat{eta}_{4}	128.97	86.85	86.58	-0.31
\hat{eta}_{5}	-159.89	-291.42	-292.94	0.52
\hat{eta}_{6}	-449.39	-295.44	-294.81	-0.21
\hat{eta}_{7}	55.33	415.40	418.63	0.78
\hat{eta}_8	544.75	321.54	321.07	-0.15
\hat{eta}_{9}	131.54	-297.78	-300.64	0.96
\hat{eta}_{10}	-231.37	-120.38	-120.33	-0.05
\hat{eta}_{11}	-93.63	92.01	92.86	0.93
RSS	42051.86	42060.93	42060.93	0.00
Runtime (secs)	< 0.01	17.01	4.39	-74.19

Demonstration on the Berkeley Growth Dataset

Female fit $(n = 1,674)$				
	OLS	MonoPoly	COLS	Diff. (%)
	(1)	(2)	(3)	(3) - (2)
Monotonic fit?	Yes	Yes	Yes	
\hat{eta}_{0}	139.96	139.96	139.96	0.00
\hat{eta}_1	56.41	56.41	56.41	0.00
\hat{eta}_2	28.34	28.34	28.34	0.00
\hat{eta}_3	-22.92	-22.92	-22.92	0.00
\hat{eta}_{4}	-235.65	-235.65	-235.65	0.00
\hat{eta}_{5}	-37.00	-37.00	-37.00	-0.01
\hat{eta}_6	498.14	498.13	498.14	0.00
\hat{eta}_{7}	169.16	169.16	169.16	0.00
\hat{eta}_8	-480.85	-480.85	-480.85	0.00
\hat{eta}_{9}	-219.32	-219.32	-219.32	0.00
\hat{eta}_{10}	172.03	172.03	172.03	0.00
\hat{eta}_{11}	101.86	101.87	101.86	0.00
RSS	55297.89	55297.89	55297.89	0.00
Runtime (secs)	< 0.01	17.03	3.96	-76.75

Constrained Orthogonal Least Squares (COLS) estimation

COLS in summary;

- + Testing suggests it may be faster than existing methods
- + Requires only linear reparametrisation
- + Applies to any closed convex parameter space
 - + Difficult constraints such as monotonicity
 - + Multiple constraints
- + Can be used in mixed effects models
- Iterative, not a closed form solution (like OLS)

Polynomial mixed effects models

Polynomial Mixed effects models

Estimation methodology

Two questions:

- 1. How do we constrain the **mean** polynomial curve to be monotonic?
- 2. How do we constrain **individuals'** polynomial curves to be monotonic, in addition to the mean curve?

Estimation methodology

Two questions:

- 1. How do we constrain the **mean** polynomial curve to be monotonic?
- 2. How do we constrain **individuals'** polynomial curves to be monotonic, in addition to the mean curve?

Suggested methods:

- A1. The **Expectation-Maximisation**⁷ algorithm and COLS
- A2. Truncated multivariate normal distribution

⁷A. P. Dempster et al., Journal of the Royal Statistical Society. Series B (Methodological) **39**, 1–38 (1977).

1. Constraining the mean curve

Advantages of the **Expectation-maximisation algorithm**;

- Separates mean estimation from random effects estimation
 - COLS on RSS-like problem
- Flexible for random effects
 - Constrained
 - MCEM for non-standard random effects⁸
- Already tested on mixed effects models⁹
- Convergence properties on constrained parameter space hold¹⁰

⁸J. G. Booth, J. P. Hobert, *Journal of the Royal Statistical Society. Series B* (Statistical Methodology) **61**, 265–285 (1999).

⁹N. Laird et al., Journal of the American Statistical Association **82**, 97–105 (1987).

¹⁰D. Nettleton, Canadian Journal of Statistics 27, 639–648 (1999).

1. Constraining the mean curve

- 1. Initialise parameters
- 2. E-step: $extbf{ extit{U}}^{[t]} = \mathbb{E}\left(extbf{ extit{U}} \mid extbf{ extit{Y}}, eta^{[t-1]}
 ight)$, with $extbf{ extit{U}} \sim \mathcal{N}\left(extbf{0}, extbf{ extit{G}}
 ight)$
- 3. M-step: Minimise RSS with COLS and $\mathbf{Y}^* = \mathbf{Y} \mathbf{Z} \mathbf{U}^{[t]}$

$$\boldsymbol{\beta}^{[t]} = \arg\min_{\boldsymbol{\beta}} \left\{ \left(\boldsymbol{Y}^{\!*} - \boldsymbol{X} \! \boldsymbol{\beta} \right)^T \left(\boldsymbol{Y}^{\!*} - \boldsymbol{X} \! \boldsymbol{\beta} \right) \right\} \text{ s.t. } \boldsymbol{\beta} \in \Omega_{\boldsymbol{\beta}}$$

- 4. M-step: Update variance parameters
- 5. Iterate through E-steps and M-steps until convergence

- 1. Initialise parameters
- 2. E-step: $\mathbf{\textit{U}}^{[t]} = \mathbb{E}\left(\mathbf{\textit{U}}_{\textit{T}} \mid \mathbf{\textit{Y}}, \mathbf{\textit{\beta}}^{[t-1]}\right)$, with $\mathbf{\textit{U}}_{\textit{T}} \sim \mathcal{N}_{\textit{T}(\mathbf{\textit{\beta}})}\left(\mathbf{0}, \mathbf{\textit{G}}\right)$
- 3. M-step: Minimise RSS with COLS and $\mathbf{Y}^* = \mathbf{Y} \mathbf{Z} \mathbf{U}^{[t]}$

$$\boldsymbol{\beta}^{[t]} = \arg\min_{\boldsymbol{\beta}} \left\{ \left(\boldsymbol{Y}^{\!*} - \boldsymbol{X} \boldsymbol{\beta} \right)^T \left(\boldsymbol{Y}^{\!*} - \boldsymbol{X} \boldsymbol{\beta} \right) - \eta \left(\boldsymbol{\beta} \right) \right\} \text{ s.t. } \boldsymbol{\beta} \in \Omega_{\boldsymbol{\beta}}$$

- 4. M-step: Update variance parameters
- 5. Iterate through E-steps and M-steps until convergence

Complications from constraining individuals' curves;

- $\eta(\beta)$, the "penalty" term from truncation
- $lacksquare \mathbb{E}\left(oldsymbol{\mathcal{U}}_{\mathcal{T}} \, ig| \, oldsymbol{\mathsf{Y}}, oldsymbol{eta}^{[t-1]}
 ight)$

Complications from constraining individuals' curves;

- $\eta(\beta)$, the "penalty" term from truncation
- $lacksquare \mathbb{E}\left(\mathcal{U}_{\mathcal{T}} \,\middle|\, oldsymbol{Y},eta^{[t-1]}
 ight)$

$$\eta(\boldsymbol{\beta}) = \log \left(\int_{\mathcal{T}(\boldsymbol{\beta})} \left((2\pi)^{rg} |\boldsymbol{G}| \right)^{-1/2} \exp \left\{ -\frac{1}{2} \boldsymbol{W}^T \boldsymbol{G}^{-1} \boldsymbol{W} \right\} d\boldsymbol{W} \right)$$

When r = 2 the truncation is point-wise:

$$T(\beta) = \left\{ \mathcal{U}_T = \left[u_{0,1} \ u_{1,1} \cdots \ u_{0,g} \ u_{1,g} \right]^T \in \mathbb{R}^{2g} \text{ s.t. } u_{i,1} \geq -c(\beta) \right\}$$

For r = 2;

- Expectation from point-truncated normal theory
- Analytical differentiation of $\eta(\beta)$ from chain rules. Envelope theorem for $c(\beta)$

For $r \ge 3$;

- Monte Carlo EM to deal with expectation
- Numerical differentiation of $\eta(\beta)$

Sleep Study Data - Degree 8 mean curves

S = [0, 9] r = random effects* = constrained

Sleep Study Data - Degree 4 mean curves

S = [0, 9] r =random effects * =constrained

Sleep Study Data - Degree 4 individual curves

Conclusion

Conclusion - Fixed effects models

For **fixed** effects models, this work has delivered;

- COLS a new method constrained regression (on closed, convex sets)
- Opens up possibilities for shape constraints, joint constraints, and more...
- Can extend beyond polynomials of a single variable

Conclusion - Mixed effects models

For mixed effects models;

- Demonstrated COLS can estimate these with an EM-algorithm
- Derived full method for r = 2 with and without constrained individuals' curves
- Suggested MCEM to extend for $r \ge 3$
- Widely useful because of the flexibility of COLS and the EM-algorithm

Appendix

Reparameterised polynomial regression

For example a monotonic polynomial can be written as 11

$$p(x) = \delta + \alpha \int_0^x \prod_{j=1}^K \left\{ 1 + 2b_j t + \left(b_j^2 + c_j^2 \right) t^2 \right\} dt$$
 (1)

with unconstrained parameters δ , b_j 's, and c_j 's.

¹¹C. D. Elphinstone, *Communications in Statistics - Theory and Methods* **12**, 161–198 (1983), D. M. Hawkins, *Computational Statistics* **9**, 233–247 (1994), D. Heinzmann, *Computational Statistics* **23**, 343–360 (2008).

Conditioning the least squares problem

For better properties we use discrete orthonormal polynomials

$$\mathbf{X}_{o} = \begin{bmatrix} p_{0}(x_{1}) & p_{1}(x_{1}) & p_{2}(x_{1}) & \cdots & p_{q}(x_{1}) \\ p_{0}(x_{2}) & p_{1}(x_{2}) & p_{2}(x_{2}) & \cdots & p_{q}(x_{2}) \\ \vdots & \vdots & \vdots & & \vdots \\ p_{0}(x_{n}) & p_{1}(x_{n}) & p_{2}(x_{n}) & \cdots & p_{q}(x_{n}) \end{bmatrix}$$

$$\langle p_i, p_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
 where $\langle f, g \rangle = \sum_{x \in D} f(x)g(x)$

Conditioning the least squares problem

For better properties we use discrete orthonormal polynomials;

Discrete orthonormal polynomials results in an orthonormal design matrix

$$\boldsymbol{X}_{o}^{T}\boldsymbol{X}_{o}=\boldsymbol{I}_{q}$$

Calculate X_o with a QR decomposition or as in Emerson¹²

¹²P. L. Emerson, *Biometrics* **24**, 695–701 (1968).

Conditioning the least squares problem

$$\min_{oldsymbol{eta}} \left\{ \mathsf{RSS}(oldsymbol{eta})
ight\} \; \mathsf{s.t.} \; oldsymbol{eta} \in \Omega_{oldsymbol{eta}}$$

	monomial (<i>X</i>)	orthonormal (X_o)
$\frac{\partial RSS}{\partial \boldsymbol{\beta}}$	$2\left(\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{\beta}-\boldsymbol{X}^{T}\boldsymbol{Y}\right)$	$2\left(\boldsymbol{\beta} - \boldsymbol{X}_{o}^{T}\boldsymbol{Y}\right)$
$\hat{\boldsymbol{\beta}}^{U}$	$\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{Y}$	$\mathbf{X}_{o}^{T}\mathbf{Y}$

Coordinate descent theory

Good global convergence properties when 13

- Parameter space closed and convex
- Object function continuously differentiable

Both satisfied by monotone polynomials over RSS.

- Monotone increasing/decreasing
- Over $\mathbb R$ or a compact subset of $\mathbb R$
- Over a broad range of difficult constraints

¹³A Cassioli et al., European Journal of Operational Research 231, 274–281 (2013).

Mixed effects models

One way to define the underlying probability model is with;

ullet a conditional normal distribution for ${oldsymbol{\mathcal{Y}}}$

$$ig(oldsymbol{\mathcal{Y}} \ ig| \ oldsymbol{\mathcal{U}} = oldsymbol{\mathcal{U}} ig) \sim \mathcal{N} \left(oldsymbol{\mathcal{X}}eta + oldsymbol{\mathcal{Z}}oldsymbol{\mathcal{U}}, oldsymbol{\mathcal{R}} ig)$$

ullet and a normal distribution for ${\cal U}$

$$oldsymbol{\mathcal{U}} \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\mathcal{G}}
ight)$$

Mixed effects models

This allows the joint pseudo-log-likelihood function to be written as

$$l_{\mathcal{Y},\mathcal{U}}(\beta,\phi_{R},\phi_{G} | \mathbf{Y},\mathcal{U})$$

$$= l_{\mathcal{Y}|\mathcal{U}}(\beta,\phi_{R},\phi_{G} | \mathbf{Y},\mathcal{U}) + l_{\mathcal{U}}(\beta,\phi_{R},\phi_{G} | \mathcal{U})$$

$$= -\frac{1}{2} \left[c + \log |\mathbf{R}| + \log |\mathbf{G}| + \mathcal{E}^{T} \mathbf{R}^{-1} \mathcal{E} + \mathcal{U}^{T} \mathbf{G}^{-1} \mathcal{U} \right]$$

where
$$oldsymbol{\mathcal{E}} = oldsymbol{Y} - oldsymbol{X}oldsymbol{eta} - oldsymbol{Z}oldsymbol{\mathcal{U}}$$

Constrained random effects, such that individual curves are monotone, may be specified by the probability model;

ullet a conditional normal distribution for ${\mathcal Y}$ (as before)

$$\left(oldsymbol{\mathcal{Y}} \ \middle| \ oldsymbol{\mathcal{U}}_{\mathcal{T}} = oldsymbol{\mathcal{U}}
ight) \sim \mathcal{N} \left(oldsymbol{\mathcal{X}}oldsymbol{eta} + oldsymbol{\mathcal{Z}}oldsymbol{\mathcal{U}}, oldsymbol{\mathcal{R}}
ight)$$

ullet and a truncated multivariate normal distribution for ${\cal U}$

$$oldsymbol{\mathcal{U}}_{T} \sim \mathcal{N}_{T(oldsymbol{eta})}\left(oldsymbol{0}, oldsymbol{\mathcal{G}}
ight)$$

where $T(\beta) \subseteq \mathbb{R}^{rg}$

The general pseudo-log-likelihood becomes:

$$l_{\mathcal{Y},\mathcal{U}_{\mathcal{T}}}(\boldsymbol{\beta},\boldsymbol{\phi_{R}},\boldsymbol{\phi_{G}}\mid\boldsymbol{Y},\mathcal{U}) = l_{\mathcal{Y},\mathcal{U}}(\boldsymbol{\beta},\boldsymbol{\phi_{R}},\boldsymbol{\phi_{G}}\mid\boldsymbol{Y},\mathcal{U}) - \eta(\boldsymbol{\beta})$$

Where $\eta(\beta)$ is the normalising term;

$$\eta(\boldsymbol{\beta}) = \log \left(\int_{\mathcal{T}(\boldsymbol{\beta})} \left((2\pi)^{rg} |\boldsymbol{G}| \right)^{-1/2} \exp \left\{ -\frac{1}{2} \boldsymbol{W}^T \boldsymbol{G}^{-1} \boldsymbol{W} \right\} d\boldsymbol{W} \right)$$

When r = 2 we have,

$$T(\beta) = \left\{ \mathcal{U}_T = \left[u_{0,1} \ u_{1,1} \cdots \ u_{0,g} \ u_{1,g} \right]^T \in \mathbb{R}^{2g} \right.$$
s.t. $u_{i,1} \ge -c(\beta), i = 1, 2, \dots, g \right\}$

which we incorporate into the expectation step.

