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Functional constraints

Functional constraints: Inequality constraints defined by a function
that varies over an auxiliary set.

β ∈ Rp such that
f(x;β) ≥ c, ∀x ∈ X ⊆ Rd

Most often in regression problems these arise as shape constraints
over certain regions, e.g. monotonic polynomials.



Functional constraints

A parameter space with functional constraints takes the form

Ω = {β ∈ Rp : f(x;β) ≥ c, ∀x ∈ X}

It is not feasible to check all x ∈ X (infinite points to check).

Instead, rewrite the constraint as

Ω =

{
β ∈ Rp : min

x∈X
f(x;β) ≥ c

}



Parameter constraints in Bayesian models

Incorporate information from the real world context into the prior
probability of the parameters.

A constrained prior can be written as

πc(β) ∝ π(β)× 1(β ∈ Ω)

β /∈ Ω are assigned a zero prior probability.

The posterior distribution is

π(β|y) ∝ π(y|β)πc(β)



Computational considerations

When estimating parameters under functional constraints
(Bayesian or ML) the computational difficulty is in assessing

min
x∈X

f(x;β) ≥ c

• When f is convex, a local minimum is the global minimum.
• Difficulties emerge when f is non-convex and X ⊆ Rd, d ≥ 2

Method: SMC + successively improving minima estimate



Sequential Monte Carlo

A subset of sequential Monte Carlo samplers1 approximate the
posterior distribution of static probabilistic models by:

• Evolving the starting distribution to the target distribution.
For example, πt ∝ π(y|β)ϕtπ(β) with increasing ϕt → 1.

• In each iteration they attempt to sample from πt by
1. Weighted resampling from the previous particles ∼ πt−1
2. Particle mutation to increase diversity (e.g. MCMC transition

kernel with invariant distribution ∼ πt)

1P. Del Moral et al., Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 68, 411–436 (2006).



Constrained Sequential Monte Carlo

Constrained sequential Monte Carlo samplers2 move particles
through a sequence of nested subsets until the constraint is
satisfied. For our purposes we use:

πt(β|y) ∝ π(β|y)1(d(β) > φt)

• π(β|y) is posterior distribution over the unconstrained space
• d(β) measures “distance” away from the constrained space

and d(β) ≥ 0 =⇒ β ∈ Ω

• −∞ = φ0 < · · · < φt < φt+1 < · · · < φT = 0
• Functional constraints: d(β) = minx∈X{f(x;β)− c}

2S. Golchi, D. A. Campbell, Computational Statistics & Data Analysis 97, 98–113
(2016).



cSMC Algorithm Overview

1. Generate initial particles: {(β̃i, Σ̃i)}N
i=1 ∼ π(β,Σ|y)

2. Calc metric: di = d(β̃i), and m =
∑N

i=1 1(di ≥ 0)
3. Calc temp: φt = median({di}N

i=1) or φt = 0 if m > N/2
4. Resample N particles from {(β̃i, Σ̃i)}N

i=1 such that di > φt

5. Jitter/mutate kept particles with MCMC kernel ∼ πt(β|y)
6. Repeat 2–5 until m = N, i.e. all β ∈ Ω



Start (β̃1, Σ̃1) (β̃2, Σ̃2) · · · (β̃N, Σ̃N) ∼ πt−1(β,Σ|y)

d(β̃1) d(β̃2) d(β̃N)Metric

(β̃1, Σ̃1) (β̃2, Σ̃2) · · · (β̃N, Σ̃N) ∼ πt(β,Σ|y)

(β̃i, Σ̃i) s.t. d(β̃i) > φtFilter

Resample
& Jitter

φt = median(di)



Monotonicity

Monotonicity in one dimension:

d(β) = min
x∈[a,b]

fx(x;β)

For twice-differentiable function, minimum can found at domain
boundaries (if finite), or roots of fx(x;β).
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Comparison of monotonic fit on “one child” dataset (Tuddenham and
Snyder, 1954, fda::onechild). Fitted polynomials and 95% credible
intervals for mean and posterior predictive distributions.
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Maximum likelihood (ML) mean fitted values versus Bayesian mean fitted
values (SMC). ML estimates from MonoPoly in R.



Monotonicity in two dimensions

Monotonicity in two dimensions:

d(β) = min
{

d1(β), d2(β)
}

where di(β) = min
x∈X

fxi(x;β)

No guarantee that fx1 or fx2 is convex. When f is an arbitrary
polynomial this is known to be a difficult problem (many local
minima and 1-dimensional boundaries).

So we approximate the distance metric:

di(β) ≈ best local min of fxi(x;β) from a set of starting points

And attempt to improve the approximation each iteration



cSMC Method

Particles now have 3 elements:

{(β̃i, Σ̃i,Ri)}N
i=1

where Ri are the local minima found. Every time a particle is
mutated the Ri are updated with some optimisation routine using
starting points:

• The original Ri (likely to be close to new minima)
• Random sample of local minima across particles, i.e. {Ri}N

i=1

Similar to a particle-swarm algorithm. Over time a global minima
(if it exists) for each particle should be found.



Start (β̃1, Σ̃1) (β̃2, Σ̃2) · · · (β̃N, Σ̃N) ∼ πt−1(β,Σ|y)

R1 R2 RN

d̂(β̃1) d̂(β̃2) d̂(β̃N)Metric

(β̃1, Σ̃1) (β̃2, Σ̃2) · · · (β̃N, Σ̃N) ∼ πt(β,Σ|y)

(β̃i, Σ̃i) s.t. d(β̃i) > φtFilter

Resample
& Jitter

Local
minima

φt = median(d̂i)

Previous minima
as starting points



Data

• Morphometric dataset
• A number of morphometric measures taken from human skulls
• Aged between 1 month and 19 years old
• 174 individuals (93 male, 81 female)

• Aim: Predict age based on a selection of measurements
• In this example, using two measures that predict well

individually for Male data.
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Unconstrained fit - 95% credible intervals for mean. Sliced by x2.
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Unconstrained posterior mean fit.



Monotone posterior mean fit.



Conclusion

• Propose generic method for handling functional constraints in
one or more dimensions

• Demonstrated with one- and two-dimensional monotonicity
constraint

• What next?
• Model selection
• Incorporate measurement error techniques
• Test on other datasets



Appendix



Comparison to maximum likelihood methods

ML regression generates an optimisation problem of the form

max
β

log{π(y|β)} s.t. β ∈ Ω

again, where

Ω = {β ∈ Rp : f(x;β) ≥ c, ∀x ∈ X}

This is a semi-infinite program, where X is often referred to as the
index set.



Why Bayesian?

Due to the constraints, asymptotic ML theory is not applicable:

• Frequentist methods may need to rely on bootstrapping
• Whereas Bayesian computational methods can approximate

entire posterior distribution

We can develop a Bayesian method to handle non-convex
functional constraints with d ≥ 2, based on:

• (Constrained) Sequential Monte Carlo
• Tracking local minima of the functional constraint



Other benefits

• No need to find optimal temperature for weights...


