FR¥™ THE UNIVERSITY OF

W N WESTERN
%? AUSTRALIA

Bayesian Regression with
Functional Inequality Constraints

Joshua J. Bon with
C. Drovandi, K. Murray & B.A. Turlach

30t of November, 2017

School of Mathematics and Statistics, University of Western Australia



An uphill battle



An uphill battle




An uphill battle




Functional constraints

Functional constraints: Inequality constraints defined by a function

that varies over an auxiliary set.
3 € RP such that
fx;8) > c,¥xe X CRY

Most often in regression problems these arise as shape constraints

over certain regions, e.g. monotonic polynomials.



Functional constraints

A parameter space with functional constraints takes the form

Q={BeRP:fix;8) >cVxe X}

It is not feasible to check all x € X (infinite points to check).

Instead, rewrite the constraint as

Q:{,GER”:E(nEi)rgf(x;ﬁ)Zc}



Parameter constraints in Bayesian models

Incorporate information from the real world context into the prior

probability of the parameters.

A constrained prior can be written as

me(B) x (B) x 1(B € Q)

B ¢ Q are assigned a zero prior probability.

The posterior distribution is

m(Bly) < 7(y18)7(B)



Computational considerations

When estimating parameters under functional constraints
(Bayesian or ML) the computational difficulty is in assessing

min fix; 3) > ¢

xeX

= When fis convex, a local minimum is the global minimum.

= Difficulties emerge when fis non-convex and X C ]Rd, d>?2

Method: SMC + successively improving minima estimate



Sequential Monte Carlo

A subset of sequential Monte Carlo samplers! approximate the
posterior distribution of static probabilistic models by:

= Evolving the starting distribution to the target distribution.
For example, 7; oc 7(y|3)%t(B3) with increasing ¢; — 1.
= In each iteration they attempt to sample from 7; by

1. Weighted resampling from the previous particles ~ 7,1
2. Particle mutation to increase diversity (e.g. MCMC transition
kernel with invariant distribution ~ ;)

LP. Del Moral et al., Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 68, 411-436 (2006).



Constrained Sequential Monte Carlo

Constrained sequential Monte Carlo samplers® move particles
through a sequence of nested subsets until the constraint is
satisfied. For our purposes we use:

m(Bly) o< 7(Bly)1(d(B) > 1)

= 7(8|y) is posterior distribution over the unconstrained space

= d(3) measures “distance” away from the constrained space
and d(B) >0 = B

= Functional constraints: d(3) = minex{f(x; 3) — c}

2S. Golchi, D. A. Campbell, Computational Statistics & Data Analysis 97, 98-113
(2016).



cSMC Algorithm Overview

o g & w e

Generate initial particles: {(3;,X)}¥; ~ 7(3, Zy)

Calc metric: dj = d(3;), and m = Zi:l 1(d; > 0)

Calc temp: ¢ = median({d-}lNl) or or =0if m> N/2
Resample N particles from {(3;,£,)}~, such that d; > ¢,
Jitter/mutate kept particles with MCMC kernel ~ 7+(8|y)
Repeat 2-5 until m= N, i.e. all 3 € Q
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Metric [ d(B4) d(3,) d(ﬁ,\,)]—> ¢ = median(d})

Filter B ) s.t. d ) > @

Resample
~m(B, X
& Jitter ‘ ‘ «(B, Zly)




Monotonicity

Monotonicity in one dimension:

d(ﬁ): min fx(X;/B)

x€|[a,b]

For twice-differentiable function, minimum can found at domain
boundaries (if finite), or roots of f(x; 3).



monotone

unconstrained

130.04

.
N}
N
o

Height (cm)

125.04

122.54

0 5’0 l(’JO 1éO 2(’)0 2%0 3(’)0 l!J 5’0 l(')O léO 2(')0 2%0 3(’]0
Days since first measurement

Comparison of monotonic fit on “one child” dataset (Tuddenham and

Snyder, 1954, fda: :onechild). Fitted polynomials and 95% credible

intervals for mean and posterior predictive distributions.
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Maximum likelihood (ML) mean fitted values versus Bayesian mean fitted
values (SMC). ML estimates from MonoPoly in R.



Monotonicity in two dimensions

Monotonicity in two dimensions:

d(8) = min {1 (B), d2(B)} where di(8) = min £ (x; B)

xeX

No guarantee that f,, or f,, is convex. When fis an arbitrary
polynomial this is known to be a difficult problem (many local
minima and 1-dimensional boundaries).

So we approximate the distance metric:
di(B) = best local min of £, (x; 3) from a set of starting points

And attempt to improve the approximation each iteration



cSMC Method

Particles now have 3 elements:
{(Bh iiv Ri)}ilil

where R; are the local minima found. Every time a particle is
mutated the R; are updated with some optimisation routine using

starting points:

= The original R; (likely to be close to new minima)

= Random sample of local minima across particles, i.e. {R;}V;

Similar to a particle-swarm algorithm. Over time a global minima

(if it exists) for each particle should be found.



Start ~71(B, Xly)

Lc?c‘jal C R, R, Ry ) Previou.s minirna
minima . . . as starting points
- L -
Metric [ (B1) d(3,) d(Bn) |— ¢ = median(d)
Filter l (B %) st. d(B;) > p¢ l
Resample
& Jitter [ ‘ ~ (B, Zy)




= Morphometric dataset
= A number of morphometric measures taken from human skulls
= Aged between 1 month and 19 years old
= 174 individuals (93 male, 81 female)

= Aim: Predict age based on a selection of measurements

= |n this example, using two measures that predict well
individually for Male data.
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St. Age

Unconstrained posterior mean fit.



Monotone posterior mean fit.



Conclusion

= Propose generic method for handling functional constraints in
one or more dimensions

= Demonstrated with one- and two-dimensional monotonicity
constraint

= What next?
= Model selection
= Incorporate measurement error techniques
= Test on other datasets



Appendix




Comparison to maximum likelihood methods

ML regression generates an optimisation problem of the form
mﬁaxlog{w(y!ﬁ)} s.t. BeQ

again, where

Q={BeRP:fix;8) >cVxe X}

This is a semi-infinite program, where X is often referred to as the

index set.



Why Bayesian?

Due to the constraints, asymptotic ML theory is not applicable:

= Frequentist methods may need to rely on bootstrapping

= Whereas Bayesian computational methods can approximate
entire posterior distribution

We can develop a Bayesian method to handle non-convex
functional constraints with d > 2, based on:

= (Constrained) Sequential Monte Carlo

= Tracking local minima of the functional constraint



Other benefits

= No need to find optimal temperature for weights...



