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Abstract We provide a method for fitting monotone poly-
nomials to data with both fixed and random effects. In pur-
suit of such a method, a novel approach to least squares re-
gression is proposed for models with functional constraints.
The new method is able to fit models with constrained pa-
rameter spaces that are closed and convex, and is used in
conjunction with an expectation-maximisation algorithm to
fit monotone polynomials with mixed effects. The resulting
mixed effects models have constrained mean curves, and
have the flexibility to include either unconstrained or con-
strained subject-specific curves. This new methodology is
demonstrated on real world repeated measures data with an
application from sleep science. Code to fit the methods de-
scribed in this paper are available online.

Keywords monotone polynomials · monotone regression ·
mixed effects · random effects · shape constraints

1 Introduction

Statistical practitioners often require fitting procedures that
adhere to the context of their application, namely some con-
straint on the regression curve to be fitted. This context rep-
resents a priori information and is often driven by physi-
cal necessity. For example, when estimating human growth
curves the height of a person should increase over time, or
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in other words the fitted curve should be monotonically in-
creasing. Ensuring the fitted regression curve adheres to a
monotonicity constraint can be challenging, as standard pro-
cedures will often determine the ‘best’ fit in violation of
such a constraint. This has prompted much research into de-
veloping methodology and algorithms for modelling mono-
tone relationships.

Monotonic relationships occur in many real-world ex-
amples. As such there has been application driven research
into monotonic fitting across several diverse areas. Ex-
amples include growth curve modelling (Zimmerman and
Núñez-Antón, 2001), dose-response curves (Kelly and Rice,
1990), calibration in probabilistic classification (Zadrozny
and Elkan, 2002), dependent variable transformations (Ram-
say, 1998), and probability density estimation (Ramsay,
1998). Furthermore, imposing a priori restrictions into a re-
gression can be very important for reasonable and practical
predictions. Hence, adding a constraint can produce a more
realistic result for the application at hand.

Fitting monotonic relations has been addressed by non-
parametric methods including isotonic regression, mono-
tonic spline regression, and kernel smoothing. Isotonic re-
gression (Barlow and Brunk, 1972; Barlow et al, 1972) was
devised specifically for fitting monotonic relations to or-
dered data and smoothing was added by Friedman and Tib-
shirani (1984). Monotonicity in spline estimation was intro-
duced and refined by a number of authors (Hornung, 1978;
Dierckx, 1980; Utreras, 1982, 1985), and shape constrained
spline procedures have been implemented more recently
(see reviews in Turlach (2005) and Hazelton and Turlach
(2011) for examples). However, nonparametric smoothing
can result in unrealistic flat stretches (Dette et al, 2006), and
often have functional forms that are difficult for subsequent
post-processing of the fitted functions, including derivative
calculations (Murray et al, 2013). In particular, whilst n-
degree B-splines (De Boor, 1978) are n − 1 times differen-
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tiable, they are still defined piecewise, complicating post-
processing. Moreover, subject-specific curves from mixed
effect B-splines models are only r − 2 differentiable where
r is the number of random effects per spline segment. As
such modelling using monotone polynomials can be moti-
vated by the need to detect derivative based quantities, such
as inflection points.

Parametrising polynomial coefficients to ensure mono-
tonicity with few constraints (or none at all) has been the
key concept underpinning monotonic polynomial estima-
tion. The idea was spawned by Elphinstone (1983) whilst
working on non-parametric density estimation. As noted by
Hawkins (1994), the Elphinstone parametrisation of a mono-
tone polynomial is highly non-linear in its parameters. As
such Hawkins developed a semidefinite quadratic program-
ming approach to estimate monotone polynomials, which
used the typical polynomial parametrisation and reduced the
number of constraints by constraining only the horizontal
inflection points. Murray et al (2013, 2016) explored the
Elphinstone parametrisations, Hawkins’ method, and devel-
oped additional parameterisations which can impose mono-
tonicity over a (semi-)compact subset of the real line. Mur-
ray et al’s work employed modern computational routines
for old and new parameterisations, reported on the substan-
tial computational limitations of previous methods and pro-
vided instructions for best-practice monotone regression in
polynomial models. The package MonoPoly (Turlach and
Murray, 2016) provides an implementation of their fitting
procedures in the statistical programming language R (R
Core Team, 2016).

The methodology presented in this paper for fitting
monotone polynomials to data, deviates greatly from the
established procedures of this kind (Hawkins, 1994; Mur-
ray et al, 2013, 2016), in that it neither uses a semidefinite
quadratic programming approach, nor non-linear parame-
terisations of the polynomial, to achieve monotonicity. The
main drawbacks of these approaches are; (i) the latter ne-
cessitates non-linear optimisation for fitting procedures, (ii)
they both are applicable only to monotonic constraints, and
(iii) neither can be easily extended to mixed effects models.
By way of contrast, we adopt an orthonormal representation
of the polynomial to induce a better conditioned optimisa-
tion problem for which a simple, but effective, coordinate
descent algorithm can be applied. These methods address
all of the aforementioned concerns.

The remainder of this paper is structured as follows:
in Section 2 we introduce a novel method for constrained
least squares regression when the feasible set is closed and
convex, and only an oracle is given for set membership.
We extend this methodology to a mixed model framework
in Section 3 and describe estimation procedures through
the use of an expectation–maximisation (EM) algorithm
in Section 4. We provide a demonstration of these tech-

niques on real data in Section 5, followed by some con-
cluding remarks in Section 6. Generic code for fitting the
proposed models are available as an R package on Github
(github.com/bonStats/gcreg). An additional example on hu-
man growth data is given in Appendix F.

2 Fixed effects methodology

In order to fit monotone polynomials with mixed effects we
first propose a novel method for fitting monotone polynomi-
als in fixed effects models. This method no longer relies on
non-linear reparametrisation and will enable the addition of
random effects.

Since the monomial parameterisation of a polynomial in
a regression model tends to create highly correlated explana-
tory variables its use leads to computational and inferential
difficulties (Bradley and Srivastava, 1979; Narula, 1979).
The latter advocated the use of discrete orthogonal poly-
nomials generated by the data to address ill-conditioning,
correlation in tests of significance for parameters, and in-
accuracy, whilst providing faster computing time than that
of procedures with a monomial basis. Earlier examples of
the generation and use of orthogonal polynomial bases for
regression appeared in Wong (1935) and Forsythe (1957),
whilst Emerson (1968) proposed a general orthonormal
polynomial generating procedure which relaxed assump-
tions of frequency and spacing of the data. We make use of
Emerson’s procedure for generating a discrete orthonormal
polynomial basis from a dataset that results in an orthonor-
mal design matrix, i.e. X>X = I.

Using the orthonormalisation procedure in Emerson
(1968), we wish to estimate the coefficients, β =[
β0 β1 · · · βq

]>
, of a polynomial, p(x;β), given by

p(x;β) =

q∑
j=0

β j p j(x), (1)

that is constructed from a set of discrete orthonormal poly-
nomials, having the form

p j(x) =

j∑
i=0

ψ j,ixi (2)

where each ψ j,i is determined by the design of the explana-
tory variable. Restricting the polynomial to be monotoni-
cally increasing or decreasing results in a closed, convex pa-
rameter space for β, which we denote as Ωβ. Hence the least
squares problem may be described as

min
β
{RSS(β)} s.t. β ∈ Ωβ (3)

where RSS(β) = (Y − Xβ)> (Y − Xβ) and the response vari-
able Y is a column vector of length n. The ith row of the de-
sign matrix X corresponds to the observation xi evaluated at
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each of the orthonormal polynomials, specifically the ith row
is

[
p0(xi) p1(xi) · · · pq(xi)

]
.

2.1 Constrained orthogonal least squares regression

To describe the optimisation of (3) under monotonicity con-
straints, we proceed, without loss of generality, with the case
of monotone increasing polynomials over the real line or
over a (semi-)compact set, which we denote by S ⊆ R. The
constrained parameter space is

Ωβ =
{
β s.t. p′(x;β) ≥ 0,∀x ∈ S

}
. (4)

We propose a coordinate descent approach to (3) un-
der the parameter space in (4) since this optimisation proce-
dure adapts well to feasible regions that are closed and con-
vex (Cassioli et al, 2013). This optimisation approach solves
a multivariate optimisation problem iteratively by reducing
the problem to a succession of univariate optimisation prob-
lems, optimising in each of these sub-problems over one pa-
rameter, whilst holding all other parameters fixed. This en-
ables the boundary of the feasible region to easily be found
in each one dimensional sub-problem. Furthermore, using
an orthonormal design matrix speeds up convergence since
the derivatives of the RSS with respect to the βis are func-
tionally independent of each other, as the derivative of the
RSS with respect to a single coefficient can be written as

∂RSS
∂βi

= 2
(
βi − X>i Y

)
= 2

(
βi − β̂

U
i

)
(5)

where β̂U
i = X>i Y is the unconstrained optimum. This mo-

tivates the use of a line search algorithm, and hence coordi-
nate descent, for optimising RSS with respect to a βi. The
algorithm searches between the current βi and β̂U

i for the
minimal RSS subject to the monotonicity constraint. Values
closer to β̂U

i will have derivative closer to zero and therefore
a smaller RSS value, so the RSS does not have to be evalu-
ated. To describe the constrained optimisation we first define
the line search in Algorithm 1. This algorithm is used to find
a coordinate’s optimal value within the permissible region.
Algorithm 1 is described recursively for the sake of brevity,
but the implementation need not be. Note that β(i) denotes
all elements of β except the ith element.

For monotone fitting, the oracle function in Algorithm 1
is

I(β,Ψ>) =

1 if β ∈ Ωβ

0 otherwise.
(6)

indicating if a particular β is monotone increasing over S .
The auxiliary variable, in this case Ψ>, converts the or-
thonormal basis to the monomial basis to calculate the
derivative of p(x;β) and test for monotonicity.

Algorithm 1 Constrained line search.
Require: I(β, A) is an indicator function (passed as an argument) for

p(β) belonging to some closed convex region. It may require an
auxiliary variable, A. The vector βcurr contains the starting values
of β, and is in the permissible region. The end point of the line
search is βaim

i .
1: procedure linesearch(βcurr, βaim

i , i, I(β, A))
2: β′(i) ← β

′′
(i) ← β

curr
(i)

3: β′i ← (βcurr
i + βaim

i )/2
4: β′′i ← βaim

i
5: if I(β′′, A) = 1 then
6: return β′′
7: else if I(β′, A) = 1 then
8: return linesearch(β′, β′′i , i, I(β, A))
9: else

10: return linesearch(βcurr, β′i , i, I(β, A))

Algorithm 2 describes the operation of the coordinate
descent routine. It takes the data Y and X as inputs, the ma-
trix Ψ>, and d = q + 1 where q is the maximal degree of
the polynomial. Note that if monotonicity is required over
the entire real line, q must be an odd number. Initialising the

Algorithm 2 Monotone OLS fitting via coordinate descent
and line search.
Require: Y is the vector of observations, X is orthonormal polyno-

mial design matrix, with d columns. Ψ> is the auxiliary variable
for conversion between orthonormal and monomial bases. βinit is
initial value (in orthonormal basis). T is the maximum iterations
and ε > 0 is the convergence criteria.

1: procedure fit.cols(Y, X,Ψ>,βinit, d,T, ε)
2: β̂

U
← X>Y

3: β[0]
← βinit

4: β[0]
0 ← β̂U

0 . update intercept.
5: for t = 1 to T do
6: i← t mod d . i, index of current element.
7: β[t]

(i) ← β
[t−1]
(i)

8: β[t]
i ← linesearch(β

[t−1], β̂U
i , i, I(β,Ψ>))

9: if t > d and ||β[t]
− β[t−d]

||< ε then return β[t]

10: return “did not converge”

coordinate descent algorithm with β[0] such that p(x;β[0]) is
monotonic allows the procedure to maintain this monotonic-
ity. A simple initial point for the polynomial is a straight line
with slope equal to one. Hence the vector β can be given an
initial value of βinit = (Ψ>)−1

[
0 1 0 · · · 0

]>
where this vec-

tor will have length d.
Finally, we note that although we use an orthonormal de-

sign matrix, the dependence between the parameters is not
completely removed since the constraints on each coordi-
nate of β vary based on the values of the other coordinates.
This necessitates that the coordinate descent algorithm opti-
mises over each coordinate at least once, but more typically
several times.

Henceforth we refer to Algorithm 2 as constrained or-
thogonal least squares (COLS). It is a flexible procedure
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that can easily be used with other kinds of constraints so
long as the feasible space is closed and convex. For other
constraints, the main change to the COLS procedure would
be the removal of line 4, and the provision of an appropriate
initial vector and oracle function.

In terms of computational cost, the COLS algorithm has
some benefits and drawbacks compared to other iterative al-
gorithms. Using an orthonormal design matrix removes one
of the two dimensions of dependence between coordinates
– dependence is only induced by the constraint. However,
it does operate coordinate-wise which is slow compared to
methods that act on multiple coordinates simultaneously. As
seen in Algorithm 2, once β̂

U
= X>Y is calculated the al-

gorithm run-time does not depend on data size, but does de-
pend on the number of parameters.

The COLS algorithm can be used directly in mixed ef-
fects model estimation by replacing line 2 of Algorithm 2
with the unconstrained minimum of the objective function
(which can be found using a Newton-Raphson algorithm
or otherwise). As an alternative, a penalised version of the
COLS algorithm is given in Appendix A. This method,
penalised constrained orthogonal least squares (pCOLS),
avoids directly finding the unconstrained minimum by tak-
ing steps based on the derivative of the objective function.
The pCOLS algorithm operates in a very similar manner to
COLS, hence a close understanding is not a prerequisite for
the rest of the paper.

3 Mixed effects methodology

In this section we consider mixed effects models to facilitate
the modelling of non-independence of observations in the
data. In particular, we seek a monotone estimation proce-
dure which extends to random effects on repeated measures
and longitudinal data. For these types of data and models,
the random effects can be interpreted as modelling devia-
tions of subject-specific curves from a population curve. In
this way the random effects also incorporate covariance of
observations belonging to the same individual. We intro-
duce random effects to define a mixed effects model using
the conditional distribution of the observations as

Y | U = U ∼ N (Xβ + ZU, R) U ∼ N (0,G) (7)

with a normal distribution for the random effects. In this
specification there are a total of n observations from g
groups (individuals) that are modelled by d covariates and
r random effects. The column vector Y is of length n, X is
an n × d fixed design matrix, β is a column vector of fixed
effects parameters with length d, Z is the random effects de-
sign matrix with size n × rg, and U is the random effects
column vector with length rg. The variances of the random
effects and measurement error, G and R, are positive definite

matrices with size rg×rg and n×n respectively. We can also
write a joint normal distribution for Y and U by[
Y
U

]
∼ N

([
Xβ
0

]
,

[
R + ZGZ> ZG

GZ> G

])
. (8)

From this joint distribution the derivation of the marginal
distribution of Y is trivial and the conditional distribution
U |Y can be derived as

U |Y = Y ∼ N (MU ,VU ) where

MU = GZ>(ZGZ> + R)−1(Y − Xβ) and

VU = G − GZ>(ZGZ> + R)−1ZG.

(9)

As we will see below, the conditional distribution Y | U in
(7) is useful for partitioning the likelihood, whilst U | Y in
(9) is required for the EM algorithm used in Section 4.

As we model subject-specific curves our model does not
use crossed random effects between subjects and within each
subject no further nesting of random effects is considered.
This imposes further structure on G and Z as both matrices
can be decomposed into block-diagonal matrices. The ma-
trix Z can be written as Z = diag

(
Z1, Z2, . . . , Zg

)
where Zi

is an ni × r matrix, a subset of the covariates in X for the in-
dividual, and ni is the number of observations for individual
i such that

∑g
j=1 n j = n. The variance-covariance matrix G

consists of a subject’s covariance matrix H which is equal
across subjects. Therefore G can be written as

G = Ig ⊗ H

where H has size r × r. The covariance matrices R and H
have parameter sets φR and φH respectively, hence φH also
parameterises G. Note that the size of vectors φR and φH
will depend on the structure of R and H, respectively.

The model in (7) has a pseudo-likelihood with latent
variable U that can be partitioned as

LY ,U (β,φR,φH |Y = Y,U ) =

LY |U (β,φR,φH | Y,U ) × LU (β,φR,φH | U ).
(10)

The first component of the pseudo-likelihood in (10) under
(7) is

LY |U (β,φR,φH | Y,U ) = ((2π)n |R|)−
1
2 exp

{
−

1
2
E>R−1E

}
(11)

where the stochasticity of E = Y−Xβ−ZU depends only on
U now that we condition on observing Y = Y. The second
component of the pseudo-likelihood is

LU (β,φR,φH |U ) = ((2π)rg |G|)−
1
2 exp

{
−

1
2
U>G−1U

}
. (12)
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Taking the logarithm of Equation (10) with components (11)
and (12) we show that the pseudo-log-likelihood is

lY ,U (β,φR,φH | Y,U )

= lY |U (β,φR,φH | Y,U ) + lU (β,φR,φH | U )

= −
1
2

[
c + log |R| + log |G| + E>R−1E + U>G−1U

]
(13)

where c is the logarithm of the normalising constant in the
pseudo-likelihood. Model (7) can be estimated using an EM
Algorithm to maximise the pseudo-likelihood in (10). In the
maximisation step it is possible to use constrained optimisa-
tion to ensure the mean curve of the fitted model is mono-
tone, which we discuss later. However, model (7) is mis-
specified if each individual’s curve is to be monotone. Di-
rect optimisation of the likelihood in (10) with constraints
on the random effects is possible, but would not be equiva-
lent to maximising the likelihood resulting from postulating
a suitable constrained distribution for the random effects.

Specifically, to constrain each individual’s curve to be
monotone, the underlying random effects distribution should
be changed. In keeping with standard mixed effects models
a truncated multivariate normal distribution is used, and the
truncation is chosen so that the random effects are restricted
to a space that retains the monotonicity of all individuals’
curves. We rewrite model (7) with the random effects trun-
cated as

Y | UT = U ∼ N (Xβ + ZU, R)

UT ∼ NT (β) (0,G)
(14)

where UT is a truncated multivariate normal random vari-
able, as denoted by NT (β), with support constricted to the
region T (β) ⊂ Rrg written to emphasise the dependence of
the region T on β. Note that T (β) is also dependent on the
variance parameters of the random effects in φH. The mean
of 0 and variance matrix G are the moments of the underly-
ing normal distribution, before truncation.

Using the definition in (14), we write the joint likelihood
of Y and UT as

LY ,UT (β,φR,φH | Y,UT ) =

LY |UT (β,φR,φH | Y,UT ) × LUT (β,φR,φH | UT )
(15)

without having to derive the functional form of the unparti-
tioned joint distribution. In Appendix B we show that from
(15) the joint density of Y and UT is a truncated normal
distribution. Taking the logarithm of Equation (15) gives

lY ,UT (β,φR,φH | Y,U ) =

−
1
2

[
c + log |R| + log |G| + E>R−1E + U>G−1U

]
− log

(∫
T (β)

((2π)rg|G|)−1/2 exp
{
−

1
2

U>G−1U
}

dU
)
.

(16)

Equation (16) can be rewritten as a function of the uncon-
strained likelihood (13) and the normalising term η(β) =

log (P(β)), giving

lY ,UT (β,φR,φH | Y,U ) = lY ,U (β,φR,φH | Y,U ) − η(β)
(17)

where P(β) =
∫

T (β) ((2π)rg|G|)−1/2 exp
{
− 1

2W>G−1W
}

dW.
Note that if the individuals’ curves are not constrained then
T (β) = Rrg, P(β) = 1 and hence η(β) = 0. Therefore the
likelihood in (16) is correct when the individuals’ curves are
constrained, but also when they are not. This will simplify
the discussion in Section 4.

An analogous result to (9) is needed for the conditional
distribution UT |Y . This will allow the calculation of the
mean and variance from this distribution in the expectation
step of the EM algorithm. Appendix B shows the conditional
random variable U |Y truncated to the region T (β) is the de-
sired distribution for UT |Y . Once the mean and variance of
the equivalent nontruncated distribution is found, the den-
sity (and hence moments) for the constrained distribution
are computable. The difficulty in calculating these truncated
moments then becomes evaluating high-dimensional inte-
grals over T (β). Appendix B contains more details regarding
the conditional truncated distribution of the random effects.

For simple cases of T (β) evaluating these integrals and
hence deriving the moments can be done analytically. Tallis
(1961) derives the moment generating function of point-
truncated multivariate normal distributions for example. For
r = 1 the truncation is not needed since a random inter-
cept will not affect monotonicity. For r = 2, T (β) is defined
by one-sided point truncation, and the R package tmvtnorm
(Wilhelm and Manjunath, 2015) can be used to find the
mean and variance of UT |Y based on the truncation of U |Y .
When r > 2, Monte Carlo simulation is needed to evaluate
both the expectation of the conditional U and the normalis-
ing term, η(β). The general methodology is presented next
in Section 4 whilst the various scenarios, outlined above, are
discussed in Appendix C and D.

4 Mixed effects estimation

An EM algorithm is implemented to handle the additional
complexity of random effects, that may or may not be trun-
cated, in the monotonic polynomial models. The useful-
ness of the EM algorithm for mixed models with repeated-
measures is demonstrated in Laird et al (1987) and Lind-
strom and Bates (1988), while the benefits of the algorithm
for flexible random effects are shown in Booth and Hobert
(1999) and Chen et al (2002). Additionally, even with the
difficult region of monotonicity for individual curves when
r > 2, it is feasible to employ the EM algorithm with Monte
Carlo expectations (an MCEM algorithm, see for example
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Levine and Casella (2001)). Other optimisers, such as the
Newton-Raphson method, do not afford the same level of
flexibility in random effect specification. The downside of
EM algorithms for mixed effects models is their relative
speed compared to Newton-Raphson methods (Lindstrom
and Bates, 1988). In general, we have found that warm start-
ing the EM algorithm using constrained fixed effects es-
timates from the COLS algorithm results in very reason-
able run times. In following subsections we outline the gen-
eral expectation and maximisations steps in the algorithm
for our constrained mixed effects model. Technical details
for specific instances of these models are detailed in Ap-
pendix C and D.

4.1 Expectation step

Denote the set of parameters governing the likelihood as
Θ =

{
β,φR,φH

}
. The vector of parameters, Θ, at the tth

iterate is Θ[t]. For t = 0, we specify some initial param-
eters Θ[0], and note there are two random quadratic forms
in the log-likelihood, E>R−1E and U>G−1U , whose con-
ditional expectation is needed for all EM algorithms in the
remainder of this section.

The conditional expectation of U>G−1U is

EU
(
U>G−1U

∣∣∣ Y,Θ[t]
)

= tr
[
G−1V[t]

U

]
+

(
M[t]

U

)>
G−1 M[t]

U

where M[t]
U = EU

(
U | Y,Θ[t]

)
, V[t]

U = VU
(
U | Y,Θ[t]

)
, and

tr(·) is the trace operator. The conditional expectation of the
quadratic form E>R−1E is

EU
(
E>R−1E | Y,Θ[t]

)
= tr

[
R−1 ZV[t]

U Z>
]

+
(
Y − Xβ − Z M[t]

U

)>
R−1

(
Y − Xβ − Z M[t]

U

)
.

The conditional expectation of the general pseudo-log-
likelihood in (16), denoted by q

(
Θ |Θ[t]

)
, can then be cal-

culated using the expectations of the quadratic forms to give

q
(
Θ |Θ[t]

)
= EU

(
lY ,U (Θ | Y,U ) | Y,Θ[t]

)
= −

1
2

[
c + log |R| + log |G| + tr

[
R−1 ZV[t]

U Z>
]

+
(
Y − Xβ − Z M[t]

U

)>
R−1

(
Y − Xβ − Z M[t]

U

)
+tr

[
G−1V[t]

U

]
+

(
M[t]

U

)>
G−1 M[t]

U

]
− η(β).

(18)

If we can calculate M[t]
U and V[t]

U then we are just left with the
maximisation step. When we have the unconstrained ran-
dom effects the above moments are easily computed from
Equation (9) for any reasonable r. However, constraining the
random effects (for monotonic individuals’ curves) requires
a specific truncated version of this distribution which is dif-
ficult to calculate analytically over the support T (β). A ran-
dom intercept (r = 1) is an exception, it will have no bear-
ing on monotonicity so the moments of a normal distribution

may be used. With a random intercept and slope (r = 2) the
calculation of M[t]

U and V[t]
U is possible with current methods

for calculating box-truncated multivariate normal moments.
For r > 2, the truncation is no longer linear and simulation
is needed. We use rejection and Markov chain Monte Carlo
sampling for this purpose. The technical details for incorpo-
rating a random intercept, random slope, and higher degree
random effects are discussed in Appendix C.

4.2 Maximisation step

Next, we describe the general maximisation step on the EM
algorithm. For simplicity we drop the functional notation of
the expectation and express q, as in (18), on the deviance
scale so that q[t]

dev = −2×q
(
Θ|Θ[t]

)
. Since we have negated q

we aim to minimise q[t]
devin the M-step. To minimise q[t]

dev in a
given step we must optimise over each parameter in Θ. The
general optimisation strategy is developed in this section,
whilst the details for particular classes of models are given
in Appendices D.1 to D.3.

The deviance-scale expected pseudo-log-likelihood,
q[t]

dev, can be written as

q[t]
dev = log |R| + tr

[
R−1 ZV[t]

U Z>
]

+
(
Y − Xβ − Z M[t]

U

)>
R−1

(
Y − Xβ − Z M[t]

U

)
+ log |G| + tr

[
G−1V[t]

U

]
+

(
M[t]

U

)>
G−1 M[t]

U

+ 2η(β)

(19)

after dropping all constant terms in (18). The partial deriva-
tives of q[t]

dev with respect to β, φR,i, and φH,i are

∂q[t]
dev

∂β
= − 2X>R−1W[t] + 2

∂η(β)
∂β

(20)

∂q[t]
dev

∂φR,i
= tr

[
R−1 ∂R

∂φR,i

]
− tr

[
R−1 ∂R

∂φR,i
R−1ZV[t]

U Z>
]

−
(
W[t]

)>
R−1 ∂R

∂φR,i
R−1W[t]

(21)

∂q[t]
dev

∂φH,i
= tr

[
G−1 ∂G

∂φH,i

]
− tr

[
G−1 ∂G

∂φH,i
G−1V[t]

U

]
−

(
M[t]

U

)>
G−1 ∂G

∂φH,i
G−1 M[t]

U + 2
∂η(β)
∂φH,i

(22)

where W[t] = Y−Xβ−Z M[t]
U are the “working” residuals and

the subscript i denotes the ith component of the respective
parameter vectors. In this general form, the optimisation of
q[t]

dev over β,φR and φH are interrelated. More precisely when
η(β) 6= 0 we can see from the derivatives (20) to (22) that the
optimisation of

– β depends on φR and φH,
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– φR depends on β, and
– φH depends on β

in a single M-step1. Additionally, closed form solutions may
not exist for the equations obtained by setting (20) to (22) to
zero. A natural approach to this optimisation step uses an
iteratively reweighted least squares algorithms (see, among
others Holland and Welsch, 1977) that switches between co-
efficient and variance estimates until convergence within a
single M-step.

We apply the pCOLS method to the mixed effects model
estimation by noting that Y − Xβ − Z M[t]

U can be written
as Y[t]

∗ − Xβ where Y[t]
∗ = Y − Z M[t]

U . Hence in the pCOLS
estimation procedure we replace Y with Y[t]

∗ . The derivative
to be used is

∂q[t]
dev

∂β
= −2X>R−1

(
Y[t]
∗ − Xβ

)
+ 2

∂η(β)
∂β

. (23)

When the random effects are not constrained, η(β) = 0, the
optimisation of β can employ COLS instead of pCOLS.

In a single M-step, when η(β) = 0, we see that the opti-
misation of

– β depends on φR,
– φR depends on β, and
– φH has no dependence on the other parameter sets.

In this case an iteratively reweighed scheme can be used for
β and φR and when convergence is reached the parameters
of φH can be optimised for a single M-step. Appendix D
explores further simplifications to the maximisation step so
that useful (and analytically tractable) results for the M-step
can be derived. Monte Carlo approximations to η(β) and its
partial derivatives are also proposed for use when r > 2.

5 Example on sleep study data

We use a subset of data from a sleep deprivation study (Be-
lenky et al, 2003) to demonstrate our methodology for sev-
eral types of constrained polynomial models. The technical
details of the fitting implementation are described in Ap-
pendices C and D. The data has observations from 18 indi-
viduals who, over a 10 day period, are subjected to limited
sleep (three hours per night). Individual reaction times are
recorded for a series of tests each day and the average daily
reaction time is recorded and will be used as the response
variable. Participants are said to be in recovery for the fi-
nal three observations and consequently sleep eight hours.
These data are available in the lme4 package (Bates et al,
2015) in R.

1 After multiple M-steps there is dependence through the use of up-
dated parameters in the E-step of the EM algorithm.

In such studies it seems reasonable to assume that con-
secutive evenings of insufficient sleep will lead to increas-
ingly poor reaction times. Hence, a monotonically increas-
ing mean curve, and possibly monotonically increasing
subject-specific curves may be beneficial for modelling pur-
poses. We demonstrate our methodology by initially fitting
degree eight polynomials to the data with various random
effects scenarios. Figure 1 shows the estimated mean curves
for degree eight polynomials with either two or three ran-
dom effects and different constraint structures fitted to the
data. In the key, q indicates the degree, r the number of ran-
dom effects, and an asterisk (∗) indicates which of the com-
ponents have been constrained to ensure monotonicity over
the whole 10 days of the study. Note that the unconstrained
mean fitted curve with two and three random effects coin-
cide.
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Fig. 1 Mean fitted curves for degree q = 8 polynomials with vary-
ing numbers of random effects r under different constraint structures
(∗ indicating which components, fixed or random, are constrained to
ensure monotonicity). The unconstrained mean curves coincide, as do
the constrained mean curves without random effect constraints.

The constrained mean curve with unconstrained subject-
specific curves (q = 8∗, r = 2, 3) lie in the a similar region
to the completely unconstrained curves (q = 8, r = 2, 3),
more so in days 0 to 6 than 7 to 9. The completely uncon-
strained curves seem to be overfitting between day 8 and 9,
which can be seen in Figure 2 since the data does not support
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a turning point between these days. Constraining the mean
curves to be monotonic does have the effect of decreasing
over-fitting in this instance, without having to use a lower
degree polynomial.

The constrained subject-specific mean curve (q = 8∗, r =

2∗) lies well below the other curves. The best fit under
this dually constrained model lies on the boundary of the
parameter space – observe the horizontal inflection point
(within numerical precision) between day 1 and 2. Since
each subject-specific curve is the result of a linear movement
in the intercept and the gradient, each individuals’ curve
must have a gradient greater than that of the mean curve,
over the constrained region. Hence, the y-intercept of the
mean curve compensates by reducing in magnitude to re-
spect the constraint on the random slope and provide the
best fit under these conditions.

Figure 2 shows that for the most part, the constrained
subject-specific model fits the data poorly when there is
strong evidence of non-monotonicity. Besides individual
332 with a random quadratic term, the unconstrained indi-
vidual curve fits are very similar, demonstrating the flexi-
bility of the random effects to fit data when constraints are
imposed on the mean curve.

In Figures 3 and 4 we show a lower order polynomial
(degree 4) to illustrate the situation where we define the
monotonicity constraint over a closed interval that does not
extend over the entire range of the data and show an example
where the estimated constrained subject-specific mean does
not contain a stationary point. The region of the monotonic-
ity restriction to be over days 2 to 6 is chosen to reflect the
nature of the data, given that reaction times could recover af-
ter participants were allowed an eight hour sleeping pattern
in days 7 through 9. Subject 335 is removed since they have
a negative trend which clearly violates the monotonically in-
creasing assumption that we are trying to demonstrate.

The mean fitted curves in Figure 3 are very similar,
with the constrained individuals’ curve (q = 4∗, r = 2∗)
having a very close fit to that of the unconstrained curves
(q = 4, r = 2, 3) which are indistinguishable. The (scaled)
estimated coefficients for the degree 4 fits are given in Ta-
ble 1, along with applicable standard errors. The standard
errors for the constrained fits were calculated using case
bootstrapping (by subject), whilst the estimated coefficients
and standard errors of the unconstrained fits were calculated
with lme4.

A subset of individuals that exhibit varying levels of
different subject-specific curves are given in Figure 4, and
again the random effects are shown to be very flexible at
accounting for the differences in the constrained and uncon-
strained mean curves.

We note that a limitation of the constrained random ef-
fects models may be that for estimated mean curves that are
very close to the boundary, these curves may no longer be in-

370 371 372

351 352 369

337 349 350

333 334 335

330 331 332

308 309 310

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

200

300

400

200

300

400

200

300

400

200

300

400

200

300

400

200

300

400

Days

A
ve

ra
ge

 r
ea

ct
io

n 
tim

e 
(m

s)

 
q = 8,  r = 2 q = 8,  r = 3 q = 8*, r = 2 
q = 8*, r = 2* q = 8*, r = 3 

 

Fig. 2 Subject-specific fitted curves for degree 8 polynomials with
varying random effects and constraint structures.

terpretable as estimates of the population mean curves since
the random effect distribution is no longer symmetric. Ap-
pendix F contains an example on human growth data and
constrained subject-specific curves when r > 2.

6 Discussion

In order to achieve a monotone constrained mixed effects
model estimation procedure, a new fixed effects method, no
longer based on a non-linear reparameterisation, was devel-
oped. Constrained orthogonal least squares speeds up the
estimation of monotonic polynomial fixed effects models,
and is applicable to any polynomial least squares estimation
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Fig. 3 Mean fitted curves for degree 4 polynomials with varying ran-
dom effects and constraint structures. All curves, but q = 4∗, r = 2∗,
coincide.
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Fig. 4 Subject-specific fitted curves for degree 4 polynomials with
varying random effects and constraint structures.

with a closed convex constraint. Moreover, employing a QR
decomposition can potentially extend the use of COLS to a
variety of transformations of the regressor variables, not just
polynomials. This is possible due to the minimal assump-
tions behind COLS estimation. A closed convex constraint
set, oracle function, orthonormal design matrix, and a lin-
ear transformation matrix to the standard coefficients is all
that is needed for least squares and penalised least squares
constrained regressions.

β0 β1 β2 β3 β4 σ

q = 4, -0.22 0.39 -0.10 -0.02 0.15 0.17
r = 2 (0.08) (0.07) (0.15) (0.07) (0.13) (0.01)

q = 4, -0.22 0.39 -0.10 -0.02 0.15 0.16
r = 3 (0.08) (0.09) (0.14) (0.10) (0.12) (0.01)

q = 4∗, -0.22 0.39 -0.10 -0.02 0.15 0.19
r = 2 (0.08) (0.09) (0.13) (0.09) (0.13) (0.03)

q = 4∗, -0.33 0.15 -0.17 -0.01 0.22 0.19
r = 2∗ (0.07) (0.09) (0.17) (0.09) (0.15) (0.03)

q = 4∗, -0.22 0.39 -0.10 -0.02 0.15 0.17
r = 3 (0.08) (0.09) (0.13) (0.09) (0.13) (0.03)

Table 1 Estimated mean parameters and residual (standard deviation
with standard errors in parenthesis) for degree 4 polynomials with
varying random effects and constraint structures. Standard errors for
constrained fits were calculated with case bootstrapping (N = 1000),
whereas unconstrained fits are standard output from lme4. The data
has been scaled to [−1, 1].

Using COLS for fixed effects models has several advan-
tages over non-parametric alternatives. For example, smooth
fits and predicted values, simple detection of other derivative
based quantities such as inflection points, and the ability to
interpret results in the well-known parametric framework.
The COLS procedure will also handle joint constraints,
since the intersection of a set of closed convex sets will also
be closed and convex. This enhances the ability of statistical
practitioners to incorporate a priori information into their
statistical models.

There is still work to do on monotonic and general con-
strained fits determined by COLS. For example, a theory
of standard errors for the coefficients of constrained models
needs to be developed. At present, bootstrapping seems like
the best available option for reasonable standard errors, and
Murray et al (2016) discuss this in detail. We implemented
case bootstrapping for the sleep study mixed effects mod-
els in Section 5. Encouragingly, the results were in line with
those reported from lme4. A Bayesian approach could be
another option for assessing the uncertainty in the param-
eter estimates. Determining the degrees of freedom when
some or all of the parameters are constrained would also be
useful to reduce approximation in the hypothesis testing and
variance estimation.

Uncertainty in the degrees of freedom also complicates
standard model selection techniques, such as choosing the
degree of the polynomial. Information criteria and hypothe-
sis testing are not possible without an appropriate degree of
freedom. Stratified m out of n bootstrapping to select poly-
nomial degree has proven successful in fixed effects models
Murray et al (2016), and can be extended to the mixed model
case, but is computationally demanding.

Two cases for constrained mixed effects models were
considered, (i) where the mean curve is constrained but not
each subject-specific curve, and (ii) where both the mean
curve and subjects’ curves were constrained. For case (i), a
general fitting procedure was given for an arbitrary num-
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ber of random effects, so long as the number of random
effects were less than the number of coefficients. For case
(ii), the fitting procedure for a random intercept and slope
was derived, and a Monte Carlo EM algorithm was proposed
and tested for higher order random effects. This is the first
time, to the authors knowledge, that a complex constraint
has been incorporated into mixed effects models. Further-
more, the methodology is readily extendible to other closed
convex parameter sets.

A numerically stable and versatile method for fitting
constrained models, with fixed or mixed effects, of this kind
has not yet been proposed in the statistical literature. The
applicability and usefulness to scientists and statistical prac-
titioners is compounded by the method’s basis in likelihood
theory. The developed methodology is complemented by the
publicly available R code which will help statisticians incor-
porate a priori information into models and predictions.
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A Penalised constrained orthogonal least squares
regression

A generalisation of Algorithm 2 can be useful for constrained pe-
nalised regression models and within a mixed effects model frame-
work. Specifically, in mixed effects models the β̂U

i are not available
in closed form. For notational simplicity, we discuss the necessary
changes to Algorithm 2 within a penalised regression framework.

For our purposes the penalised regression takes the form

min
β
{RSS(β) + η(β)} s.t. β ∈ Ωβ (24)

where η(β) is a continuously differentiable penalty function. Let
RSS∗(β) = RSS(β) + η(β) be the function to be minimised. The partial
derivative of RSS∗ with respect to βi is

∂RSS∗

∂βi
= 2

(
βi − X>i Y

)
+
∂η

∂βi
(25)

for which we will seek the roots, i.e. the value for which

2
(
βi − X>i Y

)
+
∂η

∂βi
= 0 (26)

for each of the βi. If the penalty term, η(β), inhibits a closed form so-
lution to (26) we must adjust Algorithm 2 to handle this additional
complexity. In essence this adjustment can be implemented by using
a Newton-Raphson (NR) type step before conducting the line search.
Due to the inexact nature of this step, more iterations will be needed
for convergence. This algorithm is a simple but effective extension to
COLS and is detailed in Algorithm 3. As an alternative, the NR algo-
rithm could be run before conducting any line search. However, Algo-
rithm 3 does not require the unconstrained solution and so this may be
unnecessary.

Algorithm 3 Monotone penalised regression fitting via co-
ordinate descent, a Newton-Raphson step, and a line search.
Require: As in Algorithm 2.
1: procedure fit.pcols(Y, X,Ψ>,βinit, d,T, ε)
2: β[0]

← βinit

3: for t = 0 to T do
4: i← t mod d
5: β[t]

(i) ← β
[t−1]
(i)

6: β̂NR
i ← β[t−1]

i + h(β[t−1]
i ) . NR step or approx-NR step.

7: β[t]
i ← linesearch(β

[t−1], β̂NR
i , i, I(β,Ψ>))

8: if t > d and ||β[t]
− β[t−d]

||< ε then return β[t]

9: return “did not converge”

The Newton-Raphson step uses the function h(b), see (27) for ex-
ample, which may be approximated based on the difficulty of finding
the second derivative, ∂

2η

∂β2
i
. If the second derivative is available then h(b)

can take the form

h(b) = −
∂RSS∗

∂βi

∂2RSS∗

∂β2
i

−1
∣∣∣∣∣∣∣
βi=b

(27)

where ∂2RSS∗

∂β2
i

= 2 +
∂2η

∂β2
i

when X is an orthonormal design matrix. If
∂2η

∂β2
i

is difficult to evaluate, a suitable approximation can be made. For

example, it may be known that ∂2η

∂β2
i

is small compared to 2 so we may

express ∂2RSS∗

∂β2
i
≈ 2 + e where e is a positive number used to shrink the

step size so that we do not overshoot the optimal value or get stuck on
a boundary. A quasi-NR step is also possible. In testing, values of e be-
tween 1 and 2 demonstrated the most potential. Reducing the step size
was also effective for Algorithm 2. Henceforth we refer to the optimi-
sation procedure in Algorithm 3 as penalised constrained orthogonal
least squares (pCOLS).

B Conditional truncated normal distribution

The first and second order moments of the conditional distributions
U | Y and UT | Y are needed for use in the EM algorithm, for the
unconstrained random effects and constrained random effects respec-
tively. Equation (9) gives the mean and variance in the unconstrained
scenario. Finding the moments when the random effects are truncated
is a non-trivial problem. We consider the general case of an arbitrary
number of random effects, although generally rg < d � n. We have
to start by finding the joint distribution of Y and U denoted here by

K =

[
Y
UT

]
where the model for Y | UT and UT is

Y | UT = U ∼ N (Xβ + ZU, R)

UT ∼ NT (β) (0,G)

as in equation (14) and T (β) ⊂ Rrg. We note that UT may be defined
using the underlying normal distribution of U by

UT = U | U ∈ T (β), where U ∼ N (0,G)

and fUT (U) = 0 if U /∈ T (β)
(28)

where fUT (U) is the density of UT . Let Y |UT and U have the densities
fY |UT (Y|U), and fU (U) respectively. The density fK(Y,U) of K can
be written as the product of the density of Y given UT with the density
of UT as

fK(Y,U) = fY |UT (Y|U) fUT (U) (29)

with U ∈ T (β). We may rewrite the density fUT (U), the truncated nor-
mal distribution, in terms of the non-truncated density of U by

fUT (U) =
fU (U)∫

T (β) fU (W) dW
(30)

with U ∈ T (β) and where W is a dummy variable for the rg-
dimensional integration. Substituting equation (30) into (29) allows the
joint density to be written as

fK(Y,U) =
fY |UT (Y|U) fU (U)∫

T (β) fU (W) dW
(31)

with U ∈ T (β). Consider the functional form of fY |UT (Y|U). It
is normally distributed without truncation since the random effects
term is given. Therefore it has the same distribution (and density)
as fY |U (Y|U) where the random effects are non-truncated. We may
rewrite equation (31) using this identity as

fK(Y,U) =
fY |U (Y|U) fU (U)∫

T (β) fU (W) dW
(32)

=
fY ,U (Y,U)∫

T (β) fU (W) dW
(33)

hence the joint distribution of Y and U is a truncated normal distribu-
tion, with U ∈ T (β). The second step in equation (33) is valid from
recognising the product of fY |U (Y|U) fU (U) as the unconstrained joint
density. Note that in fK(Y,U) no truncation is imposed on Y and po-
tentially some elements of U . At a minimum the random intercept has
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no effect the monotonicity and so can be integrated out of the denomi-
nator of equation (33).

Conditioning fK(Y,U) in equation (33) on Y = Y the density
fUT |Y=Y(U) (written to emphasise conditioning on Y) can be described
up to proportionality as

fUT |Y=Y(U) ∝ fY ,U (Y,U)

∝ fU |Y=Y(U)
(34)

since both fUT |Y=Y and fU |Y=Y are proportional to fY ,U for fixed Y.
Hence fUT |Y=Y(U) can be written as

fUT |Y=Y(U) =
fU |Y=Y(U)∫

T (β) fU |Y=Y(W) dW
(35)

by re-normalising the density in equation (34), for U ∈ T (β). This indi-
cates that the conditional distribution of UT |Y is also a truncated mul-
tivariate normal where the distribution before truncation has the same
properties as the unconstrained (non-truncated) case, U |Y . A similar
result for a conditional point-truncated multivariate normal distribution
appears in Horrace (2005).

The well know result for the conditional distribution, U |Y , is re-
stated here from equation (9), as (U |Y = Y) ∼ N

(
MU |Y ,VU |Y

)
where

MU |Y = GZ>(ZGZ> + R)−1(Y − Xβ), and

VU |Y = G − GZ>(ZGZ> + R)−1 ZG

Using the corresponding density we replace fU |Y=Y(U) in equation
(35) to obtain the general constrained conditional density of the ran-
dom effects as

fUT |Y=Y(U) =(
(2π)rg|VU |Y |

)−1/2 exp
{
− 1

2
(
U − MU |Y

)> V−1
U |Y

(
U − MU |Y

)}∫
T (β)

(
(2π)rg|VU |Y |

)−1/2 exp
{
− 1

2
(
W − MU |Y

)> V−1
U |Y

(
W − MU |Y

)}
dW

.

(36)

The evaluation of the both the above density and moments of UT |Y
is hindered by the form of the truncation T (β). In general the integrals∫

T (β) fU |Y=Y(W) dW and
∫

T (β) Wm fUT |Y=Y(W) dW are rg dimensional
integrals with dependent components. We are helped by independence
of individuals but this problem is difficult because of the complex na-
ture of T (β).

If T (β) could be defined by a set of box constraints2 the work
of Tallis (1961) and Lee (1979) to establish the analytical results for
the moments of point-truncated multivariate normal densities and their
numerical calculation (Leppard and Tallis, 1989) can be used. As dis-
cussed in Section 4 this only occurs for r = 2. In this case the R pack-
age, tmvtnorm (Wilhelm and Manjunath, 2015), is able to provide the
truncated distribution’s mean and variance based of the unconstrained
distribution of U |Y with mean MU |Y and variance VU |Y .

For r > 2 Monte Carlo simulation is necessary. One could im-
plement a routine similar to that of Damien and Walker (2001) but
replace the indicator function for standard truncation with one that ad-
heres to the constraints of our application. This would simulate a T (β)-
truncated multivariate normal distribution which could then be used to
evaluate the mean and variance. We outline our proposed methods in
Appendix C.3 and D.4.

2 Box constraints occur when
T (β) =

{
(u1, u2, . . . , urg) ∈ Rrg : ai,1 ≤ ui ≤ ai,2, i = 1, 2, . . . , rg

}
where

the ai, j’s are constants.

C Technical details of expectation steps

C.1 Random intercepts

To complete the derivation of the expectation step for a random inter-
cept model, we need to find the conditional expectation and variance
of the random effects terms U . These expectations and variances are
conditional on observing Y = Y and their calculations are simplified
as the random intercepts do not impact the monotonicity of individu-
als’ polynomials. Furthermore, the random effects’ variance structure
is now defined by φH = {σ2

H} so that H = [σ2
H] and G = σ2

H Ig. Addi-
tionally, we assume the error terms have homogenous variance so that
R = σ2

R In. Therefore from (9) we see that the conditional mean is

M[t]
U = G[t] Z>(ZG[t] Z> + R[t])−1(Y − Xβ[t])

= Z>
ZZ> +

(σ2
R)[t]

(σ2
H)[t]

In

−1

(Y − Xβ[t])

while the conditional variance is given by

V[t]
U = G[t]

− G[t] Z>(ZG[t] Z> + R[t])−1 ZG[t]

= (σ2
H)[t]

Ig − Z>
ZZ> +

(σ2
R)[t]

(σ2
H)[t]

In

−1

Z

 .

C.2 Random slope

When random slopes are included in the model we need to impose
a suitable truncation on the distribution of the random effects, when
we also wish to constrain the individuals’ curves. The first step is to
derive the form of truncation needed when we have two random ef-
fects present. Define p(x;β, u0,i, u1,i) as the ith individuals’ orthonormal
polynomial curve to be estimated in the random intercepts and slopes
model. We may write this equation by extending (1) so that

p(x;β, u0,i, u1,i) =

(β0 + u0,i)p0(x) + (β1 + u1,i)p1(x) +

q∑
j=2

β j p j(x)
(37)

where u0,i and u1,i are the random intercepts and slopes and the p j are
defined in (2). Note also that p0(x) = ψ0,0 and p1(x) = ψ1,0 + ψ1,1 x,
where ψi, j are elements of Ψ. The derivative of (37) with respect to x
is

p′(x;β, u1,i) = ψ1,1(β1 + u1,i) +

q∑
j=2

β j p′j(x) (38)

whereby monotonicity for each individual i is maintained whilst
p′(x;β, u1,i) ≥ 0 for all x in the set S . When estimating the constrained
random effects we take β as fixed in our optimisation process for a
given iteration, in accordance with the E-step of the EM algorithm. Af-
ter fixing β, the monotonicity for each individuals’ curve is determined
additively by u1,i and the shape of the curve. To determine the neces-
sary truncation for u1,i the minimum of the derivative of the individual’s
curve as a function of u1,i is sought. Maintaining this minimum above
zero will provide the correct truncation. Given (38) we see that

min
x∈S

p′(x;β, u1,i) = min
x∈S

p′(x;β) + ψ1,1u1,i (39)
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where the derivative of the mean curve is p′(x;β) =
∑q

j=1 β j p′j(x). We
denote the scaled minimum of this polynomial as

c(β) = ψ−1
1,1 min

x∈S
p′(x;β) (40)

which can be calculated for a given β by applying standard root-solving
routines to the derivative of p′(x;β). The fixed coefficient ψ1,1 that ap-
pears in (40) can be expressed as

ψ1,1 =

 n∑
i=1

(xi − x̄)2

−1/2

(41)

as a result of the orthonormality of p0(x) and p1(x) over the set of ob-
servations {x1, x2, . . . , xn}. Once c(β) is determined, the monotonicity
of the individuals’ curves in the random intercept and slope model is
guaranteed by one of the following equivalent statements

min
x∈S

p′(x;β, u1,i) ≥ 0

ψ1,1c(β) + ψ1,1u1,i ≥ 0

u1,i ≥ −c(β).

The last statement uses ψ1,1 > 0 by its definition in (41). Hence, we
have a one sided point truncation of u1,i which can be used to define
the truncation region T (β) as

T (β) =

{
UT =

[
u0,1 u1,1 u0,2 u1,2 · · · u0,g u1,g

]>
∈ R2g

s.t. ui,1 > −c(β), i = 1, 2, . . . , g
} (42)

when we have a random intercept and slope.
Having the form of the truncation in (42), we use the result of Ap-

pendix B for UT |Y which tells us the conditional distribution is a trun-
cated multivariate normal random variable. The R package tmvtnorm
(Wilhelm and Manjunath, 2015) can be used to find the expectation and
variance of this distribution for use in the E-step because T (β) defines
a point truncation.

C.3 Higher order random effects

To evaluate the expectation and variance of the conditional random ef-
fects when r > 2 we use Monte Carlo integration. There are two simple
Monte Carlo methods we consider for this task, rejection sampling and
the Metropolis-Hastings algorithm (Hastings, 1970).

The rejection sampler proceeds by drawing samples from the mul-
tivariate normal distribution governing the unconstrained conditional
random effects. As in the general case, the relevant unconstrained mean
and variance are given by

M[t]
U = G[t] Z>(ZG[t] Z> + R[t])−1(Y − Xβ[t]) and

V[t]
U = G[t]

− G[t] Z>(ZG[t] Z> + R[t])−1 ZG[t].

However, we decompose these matrices into subject-specific means
and variances assuming no crossed random effects, i.e. G is a block-
diagonal matrix. This way we can sample from g r-dimensional dis-
tributions rather than one rg-dimensional distribution. It is also easily
parallelised.

A random sample is drawn from the underlying unconstrained
multivariate normal distribution for each subject. The realisations are
rejected when the resulting subject-specific curve is not monotone. The
remaining set are effectively samples drawn from the truncated multi-
variate normal distribution and the approximate expectation and vari-
ance is calculated from this set.

Rejection sampling is adequate if a sufficient number of realisa-
tions of the unconstrained sample are monotone. If not, it may be very

slow to draw realisations from the constrained distribution. In these
cases, a random walk Metropolis algorithm (Metropolis et al, 1953)
is a good alternative. In order to adhere to the constrained space an
additional step is added to the algorithm that rejects non-monotonic
proposals. This algorithm is in the class of random walk Metropolis-
Hastings (RWMH) samplers.

It is sensible to define the random walk in the RWMH to have
variance equal to τV[t]

U where τ ∈ (0, 1) is a constant used to scale down
the step size. Using this variance incorporates the inherent correlation
of the random effects which is only altered by the truncation from the
extra rejection step. The only tuning parameter is then τ, which can be
chosen in the warm-up phase or be pre-determined. Implementations
should consider thinning the samples to reduce autocorrelation in the
Markov chain.

To reduce computation time we use a combination of rejection
sampling and RWMH. Initially, we draw a preliminary sample of each
subjects’ constrained random effects using rejection sampling and cal-
culate individual acceptance ratios. The subjects with low acceptance
ratios are transferred to the RWHM algorithm to draw samples – the
more efficient option. As with the rejection sampler, the approximate
expectation and variance is then calculated from the constrained ran-
dom samples of each individual.

D Technical details of maximisation steps

D.1 Homogenous observational variance

In the special case where R = σ2
R In so that φR =

{
σ2

R

}
, the equation

∂q[t]
dev

∂σ2
R

= 0 can be solved analytically. The derivative of q[t]
dev with respect

to σ2
R can be simplified to

∂q[t]
dev

∂σ2
R

=tr
 1
σ2

R
In

 − tr
 1
σ4

R
In ZV[t]

U Z>
 − (

W[t]
)> 1
σ4

R
InW[t]

=
n
σ2

R
−

1
σ4

R
tr

[
ZV[t]

U Z>
]
−

1
σ4

R

(
W[t]

)>
W[t].

(43)

Equating (43) to zero we find that, the optimal σ2
R for a given β is

σ2
R =

1
n

[
tr

[
ZV[t]

U Z>
]

+
(
W[t]

)>
W[t]

]
. (44)

The denominator in (44) could be replaced by the degrees of freedom
in the model. If this were a fixed effects model we would replace n by
n − d where d is the number of coefficients. However, calculating the
degrees of freedom in a constrained mixed effects model is complicated
in two ways. Firstly, d describes the upper limit for the number of fixed
effects parameters in the context of degrees of freedom. This is because
the number d does not account for the constraint over the parameter
space. Secondly, we need to account for the random effects which do
not constitute parameters in the general sense but are estimated and
reduce the degrees of freedom in the model3. We defer this choice for
future consideration, and for the time being conservatively use n.

In the optimisation of β, with R = σ2
R In, we can simplify (20) to

∂q[t]
dev

∂β
= −

2
σ2

R
X>

(
Y − Xβ − Z M[t]

U

)
+ 2

∂η(β)
∂β

= −
2
σ2

R

(
X>Y − β − X>Z M[t]

U

)
+ 2

∂η(β)
∂β

(45)

3 For a detailed discussion on the degrees of freedom in a mixed
effects model see Chapter 2.2 of Hodges (2013).
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and optimisation still needs to be iterative in the M-step since the de-
pendence on σ2

R and φH is retained (the parameters in φH enter (45)
through η(β)). Therefore the parameter dependence structure has not
changed the scenario described in Section 4.2 when η(β) 6= 0. To find
β in each step, pCOLS can still be used iteratively in combination with
optimisation of the variance parameters.

When the individual curves are not constrained (η(β) = 0), equat-
ing (45) to a vector of zeros gives β̂

U
= X>Y[t]

∗ , which replaces the
standard unconstrained solution in Algorithm 2 for the COLS optimi-
sation. The dependence on σ2

R can be ignored in the coordinate descent
routine, since it is just a multiplicative constant to the derivative. Hence
the M-step dependence structure with homogenous observational vari-
ance and no constraint on the random effects (η(β) = 0) is simplified.
The optimisation of

– β has no dependence on the other parameter sets,
– φR depends on β, and
– φH has no dependence on the other parameter sets

in any one M-step. So to estimate this model we carry out the expec-
tation step, maximise over β followed by φR. The variance parameters
φH can be optimised at any stage. Then we repeat the expectation and
maximisation steps until convergence is reached.

D.2 A random intercept

Having only a random intercept model simplifies the optimisation step
considerably. It reduces the variance vector φH to φH =

{
σ2

H

}
so that

H =
[
σ2

H

]
and G = σ2

H Ig. We continue to assume R has homoge-
nous variance so R = σ2

R In, which still provides simplification if this
is not the case. Including only a random intercept dictates that a sub-
ject’s curve is monotone if the mean curve is and so there is no need
for truncation of the random effects’ normal distribution. The random
intercept is normally distributed and the normalising term, η(β), is null.

Updating the derivative of q[t]
dev with respect to σ2

H from (22) with
η(β) = 0, we have

∂q[t]
dev

∂σ2
H

= tr
[
G−1 ∂G

∂σ2
H

]
− tr

[
G−1 ∂G

∂σ2
H

G−1V[t]
U

]
−

(
M[t]

U

)>
G−1 ∂G

∂σ2
H

G−1 M[t]
U

= tr
[
σ−2

H Ig Ig

]
− tr

[
σ−2

H Ig Igσ
−2
H IgV[t]

U

]
−

(
M[t]

U

)>
σ−2

H Ig Igσ
−2
H Ig M[t]

U

= gσ−2
H − σ

−4
H tr

[
V[t]

U

]
− σ−4

H

(
M[t]

U

)>
M[t]

U .

Setting the derivative to zero we find that

σ2
H =

1
g

[
tr

[
V[t]

U

]
+

(
M[t]

U

)>
M[t]

U

]
. (46)

Since η(β) = 0, the unconstrained solution for β can be found analyti-
cally from (45), and takes the form

βU = X>Y − X>Z M[t]
U (47)

in a given iterate. Consequently, the σ2
R term can be ignored in the co-

ordinate descent optimisation when only a random intercept is present.
This gives us the final components of the updating equations for

our variance components. Using the COLS methods for β, (44) for σ2
R,

and (46) for σ2
H, the EM updating equations are

β[t+1] = COLS (Algorithm 2) with (47)(
σ2

R

)[t+1]
=

1
n

[
tr

[
ZV[t]

U Z>
]

+
(
Y[t]
∗ − Xβ[t+1]

)> (
Y[t]
∗ − Xβ[t+1]

)]
(
σ2

H

)[t+1]
=

1
g

[
tr

[
V[t]

U

]
+

(
M[t]

U

)>
M[t]

U

] (48)

in this order, where Y[t]
∗ = Y−Z M[t]

U . This completes the EM algorithm
for models with just a random intercept.

D.3 A random slope

Upon introducing a random slope into the model we must consider the
normalising term and its derivatives, as well as the variance structure of
the random effects. These will affect the way we undertake the maximi-
sation step in each iterate of the EM algorithm. The first consideration
is the definition and derivative of the normalising term η(β). Alterna-
tively to (42), define the support by grouping the random effects by
individual as

Ti(β) =
{
UT,i =

[
u0,i u1,i

]>
∈ R2 : ui,1 > −c(β)

}
for i = 1, 2, . . . , g, where c(β) is defined in (40). In the case of random
slopes, η(β) can be simplified and evaluated analytically. Additionally,
independence of the groups of random effects, and the marginalising
over the random intercept, w1, allows us to write η(β) as

η(β) = log
(∫

T (β)

(
(2π)2g|G|

)−1/2
exp

{
−

1
2

U>G−1U
}

dU
)

= log
([∫

Ti(β)

(
(2π)2|H|

)−1/2
exp

{
−

1
2

[
u1 u2

]
H−1

[
u1
u2

]}
du1 du2

]g)
= g log

(∫ ∞

−c(β)

∫ ∞

−∞

(
(2π)2|H|

)−1/2
exp

{
−

1
2

[
u1 u2

]
H−1

[
u1
u2

]}
du1 du2

)
= g log

∫ ∞

−c(β)

(
(2π)σ2

H,1

)−1/2
exp

− u2
2

2σ2
H,1

 du2

 .
Finally, the normalising term can be written as

η(β) = g log
[
1 − Φ

(
−c(β)
σH,1

)]
(49)

by noting its relation to the standard normal cumulative distribution
function, denoted by Φ(z).

The expression of the normalising term in (49) allows us to eval-
uate the derivatives of η(β) analytically. The derivative with respect to
β is somewhat involved, requiring envelope theorem4 (Milgrom and
Segal, 2002) to evaluate the derivative5 dc

dβ , in addition to successive
chain rules. We find that

∂η

∂β
=

 Φ′
(
−c(β)
σH,1

)
σH,1

[
1 − Φ

(
−c(β)
σH,1

)]  dc
dβ

(50)

where Φ′(z) is just the density of the standard normal distribution. Us-
ing the results of Appendix E, the component form of (50) can be writ-
ten as

∂η

∂βi
=

 Φ′
(
−c(β)
σH,1

)
σH,1

[
1 − Φ

(
−c(β)
σH,1

)]  p′i (x∗)
ψ1,1

(51)

where p′i (x) is the derivative of the ith polynomial in the orthonormal
basis for 0 ≤ i ≤ q, x∗ = arg minx∈S p′(x;β), and ψ1,1 is defined in (41).

The second consideration in the M-step when r = 2 is finding
the derivative of η(β) with respect to the random effects variance com-
ponents. The variance-covariance matrix, G, becomes a block-diagonal

4 Appendix E contains details on the envelope theorem.
5 The full derivative is used here because c(β) is a multivariate com-

posite function where each component is dependent on β. See Ap-
pendix E for more details.
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matrix made up of g positive definite matrices, H, with dimension 2×2.
The variance parameters of H have general derivative given by (22) re-
stated here as

∂q[t]
dev

∂φH,i
= tr

[
G−1 ∂G

∂φH,i

]
− tr

[
G−1 ∂G

∂φH,i
G−1V[t]

U

]
−

(
M[t]

U

)>
G−1 ∂G

∂φH,i
G−1 M[t]

U + 2
∂η(β)
∂φH,i

.

Generally H is considered to have the form

H =

[
σ2

H,0 ρH
ρH σ2

H,1

]
and G = Ig ⊗ H. However, to estimate these parameters we need to
transform H, and hence G, to induce an unconstrained optimisation
problem. Although several matrix reparameterisations that preserve
positive definiteness exist (Pinheiro and Bates, 1996), we use the log-
Cholesky decomposition. The Cholesky parameterisation decomposes
a positive definite matrix into the product of two triangular matrices,
thereby ensuring positive definiteness when working with this form,
but to ensure uniqueness we enact a log-transform on the diagonals.
The log-Cholesky decomposition can be described as H = LH L>H,
where LH is a lower triangular matrix with diagonal raised to the ex-
ponential number.

Due to the dependence of normalising term, η(β), on σ2
H,1 we

change this parameterisation to use an upper triangular matrix rather
than the standard lower triangular matrix. The upper triangular matrix
is therefore defined as

J H =

[
exp{ω1} ω3

0 exp{ω2}

]
(52)

where the redefined H becomes

H = J H J>H =

[
exp{ω1} ω3

0 exp{ω2}

] [
exp{ω1} 0
ω3 exp{ω2}

]
(53)[

σ2
H,0 ρH
ρH σ2

H,1

]
=

[
exp{2ω1} + ω2

3 ω3 exp{ω2}

ω3 exp{ω2} exp{2ω2}

]
(54)

which ensures that σ2
H,1 = exp{2ω2} is a function of just one of the new

parameters rather than two.
Let JG = Ig ⊗ J H, replacing G with JG the derivative of q[t]

dev with
respect to the parameters of J H (and hence JG) becomes

∂q[t]
dev

∂ωi
=2tr

[
J−1

G
∂ JG
∂ωi

]
− 2tr

[(
JG J>G

)−1 ∂JG

∂ωi
J−1

G V[t]
U

]
− 2

(
M[t]

U

)> (
JG J>G

)−1 ∂JG

∂ωi
J−1

G M[t]
U + 2

∂η(β)
∂ωi

(55)

where a standard derivative based routine can solve for (55) set to zero,
and M[t]

U and V[t]
U can be found using tmvtnorm (Wilhelm and Man-

junath, 2015) as discussed in Section C.2. The normalising term from
(49) can now be represented using ω2 instead of σH,1 as

η(β) = g log
[
1 − Φ

(
−c(β)

exp{ω2}

)]
(56)

for which the derivative of η(β) with respect to ω2 is

∂η

∂ω2
= −g

 Φ′
(
−c(β)

exp{ω2}

)
1 − Φ

(
−c(β)

exp{ω2}

)  c(β)
exp{ω2}

(57)

and zero for ω1 and ω3, thus fully specifying Equation (55).
In summary, with a random intercept and slope, the M-step be-

comes

β[t+1] = pCOLS (Algorithm 3) using (45) and (51)

(
σ2

R

)[t+1]
=

1
n

[
tr

[
ZV[t]

U Z>
]

+
(
Y[t]
∗ − Xβ[t+1]

)> (
Y[t]
∗ − Xβ[t+1]

)]
(ωi)[t+1] = numerical optimisation using (19), (55), and

(57) when appropriate.

In a single M-step these individual optimisations should be carried out
iteratively to account for the dependence of the parameters detailed
in Section 4.2. It is possible to undertake each optimisation once if a
conditional EM algorithm is used (Meng and Rubin, 1993), however
further investigation of the merits in this method are left for future x.

D.4 Higher order random effects

When r > 2 it is not clear how to analytically derive the partial deriva-
tives of η(β) given the space T (β) is no longer box-constrained. Numer-
ical integration is possible, but computationally intensive compared to
the methods for r ≤ 2 previously described.

Rather than working with an rg-dimensional integral, when the
groups of random effects are independent (no crossed random ef-
fects) we can decompose the integral into g identical parts. Let u =[
u1 u2 · · · ur

]T
be a dummy variable for integration representing any of

the subjects’ random effects. The constrained region for each (subject-
specific) set of the random effects can be written as

TI(β) =

{
u ∈ Rr s.t. β +

[
uT 0 · · · 0

]T
∈ Ωβ

}
(58)

or in other words, the subject-specific polynomial created from the
mean polynomial and the subjects’ random effects must be monotone.
With these we can write η(β) with only an r-dimensional integral as

η(β) = log
(∫

T (β)
((2π)rg|G|)−1/2 exp

{
−

1
2

U>G−1U
}

dU
)

= g log
(∫

TI (β)
((2π)r |H|)−1/2 exp

{
−

1
2

u>H−1u
}

du
)
. (59)

We use Monte Carlo integration to evaluate η(β) and its’ partial
derivatives. The integrand of (59) is a probability density function,
hence to approximate the integral we can generate samples from the
distribution (multivariate normal) and count how many are in the inte-
grable region. The approximate value of η(β) is the proportion of these
iterates belonging to TI(β).

Once the value of η(β) can be approximated, numerical differen-
tiation techniques can be used to find ∂η

∂β and ∂η(β)
∂ωi

. However, some
optimisations should be made first. The derivative of η(β) with respect
to the relevant parameter α can be written as

∂η

∂α
= g

∂

∂α

∫
TI (β) ((2π)r |H|)−1/2 exp

{
− 1

2 u>H−1u
}

du∫
TI (β) ((2π)r |H|)−1/2 exp

{
− 1

2 u>H−1u
}

du
(60)

and the numerator in (60) can then be numerically differentiated. With-
out any further adjustments, all realisations will need to be tested for
membership in TI(β) every time the integral is calculated during nu-
merical integration. To reduce this computational burden, we make two
further approximations

1. Fix the realisations of the multivariate normal distribution for the
entire EM algorithm (but use a large number of samples);

2. Only use a sub-sample of the realisations when approximating the
derivative.



16 Joshua J. Bon et al.

More specifically, the sub-sample should be the realisations from
the underlying distribution that are sufficiently close to the monotone
boundary, for a given β. These are the only samples which will impact
calculation of the derivative, as they lose and gain membership in TI(β)
based on very small changes to β and ω1, ω2, ... respectively. Realisa-
tions that are sufficiently far away from the boundary will not change
membership during the derivative calculation. Conveniently, we can
calculate how close the samples are to the monotone boundary using
c(β) in (40) and take a subset by smallest absolute value. The size of
the sub-sample will affect accuracy of the derivative and computational
effort. But in our testing we have found it is a worthwhile trade-off.

Once approximated, the derivatives and function can be used in
the M-step as described in Appendix D.3.

E Derivative of the normalising term

In Section 4.2 we are faced with finding the derivative of the normalis-
ing term of the form

η(β) = log
(∫

T (β)
((2π)rg|G|)−1/2 exp

{
−

1
2

W>G−1W
}

dW
)
. (61)

In general, finding the derivative of (61) with respect to β requires
use of the chain rule to handle the logarithm, and the Fundamental
Theorem of Calculus (FTC) for the integral. However as it stands the
integral is too general to make use of the FTC. The difficulty being
the integrable region, T (β). In the general case, we suggest the use
of numerical integration techniques to find this derivative. Since it is
the integrable region that is complicated, it may be that Monte Carlo
methods are most appropriate. For now we use the normalising term in
the case of Section D.3 where we have a random intercept and slope.
In this case the normalising term, from (49) is

η(β) = g log
[
1 − Φ

(
−c(β)
σH,1

)]
and we derive the derivative, in (50), as

∂η

∂β
=

 Φ′
(
−c(β)
σH,1

)
σH,1

[
1 − Φ

(
−c(β)
σH,1

)]  dc
dβ

where σH,1 = exp{ω2} when using the log-Cholesky decomposition.
The difficulty in (50) is finding dc

dβ , for which we turn to envelope theo-
rem6. The function c(β) is the linear distance from the minimum value
of p′(β) to the x-axis. It was defined in (40) as

c(β) = ψ−1
1,1 min

x∈S
p′(x;β).

Standard envelope theorems generally apply to dc
dβ when S = R, how-

ever the case where S is an arbitary set is covered by Theorem 1 of
Milgrom and Segal (2002). As a result the derivative of c(β) can be
written as

dc(β)
dβ

=
1
ψ1,1

∂p′(x;β)
∂β

∣∣∣∣∣∣
x=x∗(β)

(62)

6 Schmidt (2004) attributes the origins of the envelope theorem to
Auspitz and Lieben (1889) (in German) in their review, and acknowl-
edges that these theorems are not well know outside of economics and
sensitivity analysis. An early English publication of the envelope theo-
rem is contained within Samuelson (1947), which was further extended
by Afriat (1971) and others.

where x∗(β) = arg minx∈S p′(x;β) which can be calculated for a given
β. Recall that p′(x;β) =

∑q
i=1 βi p′i (x) where the pi are the orthonormal

polynomials. Therefore the component form of (62) is

dc(β)
dβi

=
1
ψ1,1

∂p′(x;β)
∂βi

∣∣∣∣∣∣
x=x∗(β)

=
p′i (x)
ψ1,1

∣∣∣∣∣∣
x=x∗(β)

=
p′i (x∗)
ψ1,1

.

(63)

Having found the derivative of c(β) in (63) we can state (50), in com-
ponent form, as

∂η

∂βi
=

 Φ′
(
−c(β)
σH,1

)
σH,1

[
1 − Φ

(
−c(β)
σH,1

)]  p′i (x∗)
ψ1,1

(64)

where ψ1,1 =
(∑

x∈Dw
(x − x̄)2

)−1/2
and σH,1 can be replaced by exp{ω2}

when using a log-Cholesky decomposition.

F Berkeley growth data

The Berkeley growth dataset (BGD) (Tuddenham and Snyder, 1954)
is well known in the area of growth curve analysis. It contains a set
of repeated height measurements for 39 male and 54 female children
over the ages 1 to 18. In all there are 2,883 observations. The mea-
surements were taken at unequal intervals, a total of 31 times for each
participant. The BGD is used to illustrate the monotonic mixed effect
models with higher degree of mean and random effects (with con-
strained subject-specific curves). The fitted curves should be mono-
tonic as heights of children should not decrease over time. We demon-
strate the constrained fitting methods on the males in the dataset.

Figure 5 shows the degree 12 fits with subject-specific curves de-
fined by 6 random effects. The mean curve is constrained to be mono-
tonic over the ages 0 to 18, whilst the subject-specific curves are uncon-
strained. The subject-specific curves are plotted along with the mean
curve and raw data for 9 male subjects. The differences between the
subject-specific curves and mean curve demonstrates the flexibility that
linear and parametric random effects can add.

The particular individuals in Figure 5 were chosen to demonstrate
that some of the 38 subject-specific curves are non-monotonic between
the ages of 16 and 18 (boy 35 is given as an example of a monotonic
subject-specific fit). The data for each individual appear clearly mono-
tonically increasing, but in the subject-specific terms we observe a de-
crease. This may be due to a marginally lower height recorded as one
of the last observations, such as in boy 15’s height data. It could also be
under-fitting in that area of the data. In any case, we are able to correct
for the non-monotonic fits by introducing constrained random effects
adhering to monotonicity.

Figure 6 contains the previous model structure (q = 12, r = 6) but
now the subject-specific curves are constrained to be monotonically
increasing over the ages 0 to 18. This model is more computationally
intensive than its’ lower degree counterparts in Section 5, specifically
because the evaluation of the random effects’ mean and variance, as
well as the penalty term, η(β), requires Monte Carlo integration.

Incorporating this subject constraint has induced subject mono-
tonicity but also flatter behaviour in the curves between the ages 16
to 18. This is a beneficial result as we would expect growth curves to
flatten out in later years as children stop growing. It is worthwhile not-
ing that boy 35’s subject-specific fit is almost unchanged, as we would
expect.
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Fig. 5 Mean versus subject-specific fitted curves for degree 12 poly-
nomials with 6 random effects terms overlaid on data points. The mean
is monotone-constrained for ages [0, 18].

boy35 boy37 boy38

boy20 boy29 boy34

boy01 boy10 boy15

2 6 10 14 18 2 6 10 14 18 2 6 10 14 18

80

120

160

200

80

120

160

200

80

120

160

200

Age (years)

H
ei

gh
t (

cm
)

 mean subject

Fig. 6 Mean versus subject-specific fitted curves for degree 12 poly-
nomials with 6 random effects terms overlaid on data points. The mean
and subject-specific curves are monotone-constrained for ages [0, 18].
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